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1 Introduction

A manifold is a particular kind of mathematical space, which encodes an idea
of ‘smoothness’. They’re the most general kind of space on which we can easily
do calculus - differentiation and integration. This makes them very important,
and they’re fundamental objects in geometry, topology, and analysis, as well as
having lots of uses in applied maths and theoretical physics.

The simplest example of a manifold is the real vector space Rn, for any n.
More generally, a manifold is a space that ‘locally looks like Rn’, so if you zoom
in close enough, you can’t tell that you’re not in Rn.

Example 1.1. The surface of the Earth is approximately a 2-dimensional
sphere, a space that we denote S2. There’s a myth that people used to think
the Earth was flat - the myth is obviously false, in fact the ancient Greeks had
a decent estimate of the radius of the Earth! But the story has a grain of plau-
sibility, because ‘close up’ the Earth does look flat, and we could imagine that
we’re living on the surface of the plane R2. Hence the sphere S2 is an example
of a 2-dimensional manifold.

Example 1.2. The surface of a ring doughnut is a space we call a (2-dimensional)
torus, and denote T 2 (see Figure 1). If you were a very small creature sitting
on the doughnut, it wouldn’t be immediately obvious that you weren’t sitting
on R2. So T 2 is another example of a 2-dimensional manifold.

Let’s go down a dimension:

Example 1.3. A circle, sometimes denoted S1, is an example of a 1-dimensional
manifold. A small piece of a circle looks just like a small piece of the real line
R.

Here’s an example of a different flavour:

Example 1.4. Let Mat2×2(R) be the set of all 2 × 2 real matrices, this is a
4-dimensional real vector space so it’s isomorphic to R4. Now let

GL2(R) ⊂ Mat2×2(R)
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Figure 1: A torus.

denote the subset of invertible matrices. If M is an invertible matrix, and N
is any matrix whose entries are sufficiently small numbers, then the matrix
M +N will still be invertible. So every matrix ‘nearby’ M also lies in GL2(R)
(i.e. GL2(R) is an open subset). This means that a small neighbourhood of
M looks exactly like a small neighbourhood of the origin in Mat2×2(R) ∼= R4.
Hence GL2(R) is an example of a 4-dimensional manifold.

This is an example of a Lie group, a group that is also a manifold. Lie groups
are very important, but they won’t really be covered in this course.

We often picture manifolds as being subsets of some larger vector space, e.g.
we think of S2 or T 2 as smooth surfaces sitting inside R3. This is very helpful
for our intuition, but the theory becomes much more powerful when we can talk
about manifolds abstractly, without reference to any ambient vector space. A lot
of the hard work in this course will involve developing the necessary machinery
so that we can do this.

2 Topological manifolds and smooth manifolds

2.1 Topological manifolds

We now begin formalizing the concept of a manifold. The full definition is rather
complicated, so we begin with a simpler version, called a topological manifold.

Definition 2.1. Let X be a topological space. A co-ordinate chart on X is
the data of:

• An open set U ⊂ X.

• An open set Ũ ⊂ Rn, for some n.

• A homeomorphism
f : U

∼−→ Ũ

When we want to specify a co-ordinate chart we always need to specify this
triple (U, Ũ , f), but often we’ll be lazy and just write (U, f), leaving the Ũ
implicit.

The key distinguishing property of manifolds is that co-ordinate charts exist!
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Definition 2.2. Let X be a topological space, and fix a natural number n ∈ N.
We say that X is an n-dimensional topological manifold iff for any point
x ∈ X we can find a co-ordinate chart

f : U
∼−→ Ũ ⊂ Rn

with x ∈ U .

In words, this says that at any point in X we can find an open neighbourhood
which is homeomorphic to some open set in Rn. A concise way to say this is
that X is ‘locally homeomorphic’ to Rn (some people use the term ‘locally
Euclidean’).

It’s possible to prove that an open set in Rn cannot be homeomorphic to
an open set in Rm unless n = m, so the dimension of a topological manifold is
unambiguous. The proof of this fact is not difficult, but it uses some algebraic
topology that isn’t in this course.

Remark 2.3. There are two more conditions that are usually part of the defini-
tion of a topological manifold, namely that the space X should be:

• Hausdorff, and

• second-countable.

These are technical conditions used to rule out certain ‘pathological’ examples
(see Appendix A). Every space we see in this course will be Hausdorff and
second-countable, and we’re going to avoid mentioning these conditions as far
as possible.

Example 2.4. The circle S1 is a 1-dimensional topological manifold. Let’s
prove this carefully. Firstly, let’s define S1 to be the subset

S1 =
{

(x, y); x2 + y2 = 1
}
⊂ R2

and equip it with the subspace topology. Next we need to find some co-ordinate
charts, we’ll do this using stereographic projection.

Let (x, y) be a point in S1, not equal to (0,−1). Draw a straight line through
(x, y) and the point (0,−1), and let x̃ ∈ R be the point where this line crosses
the x-axis, so:

x̃ =
x

1 + y

This sets up a bijection between points in S1 (apart from (0,−1)) and points
in the x-axis. So let’s set

U1 = S1 \ (0,−1)

and note that this is an open set, since it’s the intersection of S1 with the open
set {y 6= −1} ⊂ R2. Now set Ũ1 = R, and

f1 : U1 → Ũ1

(x, y) 7→ x̃ =
x

1 + y
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Figure 2: Stereographic projection.

Then f1 is continuous, since it’s the restriction to U1 of a continuous function
defined on {y 6= −1} ⊂ R2. To show that f1 is a bijection we write down the
inverse function:

f−1
1 : Ũ1 → U1

x̃ 7→
(

2x̃

1 + x̃2
,

1− x̃2

1 + x̃2

)
An elementary calculation shows that f−1

1 (x̃) really does lie in U1 for any x̃ ∈ R,
and that f1 and f−1

1 really are inverse to each other. Also f−1
1 is continuous

(since it’s evidently continuous when viewed as a function to R2), so we conclude
that f1 is a homeomorphism. The triple (U1, Ũ1, f1) defines our first co-ordinate
chart.

For our second co-ordinate chart, we use the same trick but we project from
the point (0, 1) instead. So we define U2 = S1 \ (0, 1) and Ũ2 = R, and:

f2 : U2
∼−→ Ũ2

(x, y) 7→ x

1− y

We repeat the previous arguments to check that this is also a co-ordinate chart.
Now any point in S1 lies in either U1 or U2 (most points lie in both) so we have
proved that S1 is a 1-dimensional topological manifold.

Now let’s do the same thing for the n-dimensional sphere Sn.

Example 2.5. Let

Sn =
{

(x0, ..., xn);
∑

x2
i = 1

}
⊂ Rn+1
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with the subspace topology. We get our first co-ordinate chart using sterero-
graphic projection from the point (0, ..., 0,−1) (the “south pole”). So we define

U1 = Sn \ (0, ..., 0,−1)

Ũ1 = Rn

and

f1 : U1 → Ũ1

(x0, ..., xn) 7→
(

x0

1 + xn
, ...,

xn−1

1 + xn

)
We can prove that f1 is a homeomorphism using the arguments from the pre-
vious example, in particular the inverse to f1 is the function

f−1
1 : (x̃0, ..., x̃n−1) 7→

(
2x̃0

1 +
∑
x̃2
i

, ... ,
2x̃n−1

1 +
∑
x̃2
i

,
1−

∑
x̃2
i

1 +
∑
x̃2
i

)
For our second co-ordinate chart we project from the point (0, ..., 0, 1) (the
“north pole”), i.e. we set

U2 = Sn \ (0, ..., 0, 1)

Ũ2 = Rn

and:

f2 : U2 → Ũ2

(x0, ..., xn) 7→
(

x0

1− xn
, ...,

xn−1

1− xn

)
Since every point in Sn lies in at least one of U1 and U2, this proves that Sn is
a topological manifold, of dimension n.

2.2 Smooth atlases

Let’s go back to S1 again. Pick a point (x, y) ∈ S1 which isn’t (0,−1) or (0, 1).
We’ve found two co-ordinate charts that we could use near this point; if we use
U1 (and f1) then our point has co-ordinate x

1+y , but if we use U2 (and f2) then
our point has co-ordinate x

1−y . How can we switch between the two co-ordinate
systems?

The intersection of our two co-ordinate charts is

U1 ∩ U2 = S1 \ {(0,−1), (0, 1)}

In this locus, both the functions f1 and f2 are defined. Now notice that in the
co-ordinate chart U1, the point (0, 1) gets mapped to the origin in R. So the
function f1 defines a homeomorphism:

f1 : U1 ∩ U2
∼−→ R \ 0

Similarly, the point (0,−1) lies in the co-ordinate chart U2, and it gets mapped
by f2 to the origin in R. So the function f2 also defines a homeomorphism:

f2 : U1 ∩ U2
∼−→ R \ 0
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To change between co-ordinates we must consider the composition:

φ21 = f2 ◦ f−1
1 : R \ 0

∼−→ R \ 0

This sends x̃ ∈ R \ 0 to:

φ21(x̃) = f2

(
2x̃

1 + x̃2
,

1− x̃2

1 + x̃2

)
=

1

x̃

So if our point has co-ordinate x̃ under our first co-ordinate chart, then it has
co-ordinate 1/x̃ in our second chart. The function φ21 is called a transition
function.

More generally, suppose X is any topological manifold, and let

f1 : U1
∼−→ Ũ1 ⊂ Rn

and
f2 : U2

∼−→ Ũ2 ⊂ Rn

be two co-ordinate charts on X. The intersection U1 ∩ U2 is an open subset of
U1, and f1 gives us a homeomorphism:

f1 : U1 ∩ U2
∼−→ f1(U1 ∩ U2) ⊂ Ũ1

The image of this homeomorphism is some open subset of Rn, contained in Ũ1.
Similarly, f2 gives us a homeomorphism

f2 : U1 ∩ U2
∼−→ f2(U1 ∩ U2) ⊂ Ũ2

onto some other open subset of Rn, which is contained in Ũ2.

Definition 2.6. Let X be a topological manifold, and let (U1, f1) and (U2, f2)
be two co-ordinate charts on X. The transition function between these two
co-ordinate charts is the function:

φ21 = f2 ◦ f−1
1 : f1(U1 ∩ U2)

∼−→ f2(U1 ∩ U2)

The transition function is automatically a homeomorphism between these
two open subsets of Rn, since it’s a composition of two homeomorphisms. Notice
that it’s possible that the intersection of U1 and U2 is empty, but then the
transition function isn’t very interesting!

Also notice that φ21 depends on the ordering of the two co-ordinate charts;
it’s the transition function from the chart U1 to the chart U2. If we reverse the
order then we get the transition function

φ12 = f1 ◦ f−1
2 : f2(U1 ∩ U2)

∼−→ f1(U1 ∩ U2)

but these two functions are inverse to each other:

φ12 = (φ21)−1

Example 2.7. Let X = Sn, and consider the two co-ordinate charts that we
found in Example 2.5. We have

U1 ∩ U2 = Sn \ {(0, ..., 0,−1), (0, ..., 0, 1)}
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f1(U1 ∩ U2) = Rn \ 0

f2(U1 ∩ U2) = Rn \ 0

(in this example both f1(U1 ∩ U2) and f2(U1 ∩ U2) happen to be the same
subset of Rn, but this is a coincidence). The transition function between these
two charts is the function:

φ21 : Rn \ 0
∼−→ Rn \ 0

(x̃0, ..., x̃n−1) 7→
(

x̃0∑
x̃2
i

, ...,
x̃n−1∑
x̃2
i

)
A transition function tells us how to change co-ordinates between two differ-

ent charts in some region of our manifold, so it tells us each new co-ordinate as
some continuous function of the old co-ordinates. However, we don’t want our
change-of-co-ordinate functions to be merely continuous, we really want them
to be smooth.

Recall that a function
F : Rn → Rm

is called smooth (or C∞) if we can take partial derivatives of F to any order,
in any direction. This definition also makes sense if F is only defined on some
open subset of Rn. Since a transition function is a function from an open set in
Rn to some other open set in Rn, it makes sense to ask if the transition function
is smooth.

Note that if we just have a single chart (U, f) then (in general) it makes no
sense to ask if f is smooth! This is because U is just an open set in an abstract
topological space X, so we have no way of defining differentiation. It’s only
when we are comparing two charts that we can ask about smoothness.

Definition 2.8. Let X be a topological manifold. An atlas for X is a collection
of co-ordinate charts on X

fi : Ui → Ũi ⊂ Rn, i ∈ I

indexed by some (possibly-infinite) set I, such that⋃
i∈I

Ui = X

So an atlas is a set of co-ordinate charts that collectively cover the whole of
X. By the definition of a topological manifold, an atlas always exists. The next
definition is more important:

Definition 2.9. An atlas for a topological manifold X is called smooth iff for
any two charts in the atlas, the transition function

φij : fj(Ui ∩ Uj)
∼−→ fi(Ui ∩ Uj), i, j ∈ I

is a smooth function.

So a smooth atlas is a collection of co-ordinate charts that cover the whole of
X, and such that whenever we change co-ordinates the new co-ordinates depend
smoothly on the old co-ordinates.
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Recall that a bijection φ between two open subsets of Rn is called a diffeo-
morphism if both φ and φ−1 are smooth. If we have a smooth atlas then all the
transition functions have to be diffeomorphisms, because the definition requires
that both φij and the inverse transition function φji = φ−1

ij are smooth.

Example 2.10. Let X = Sn, and consider the atlas consisting of the two co-
ordinate charts that we found in Example 2.5. In Example 2.7 we wrote down
the transition function φ21 between the two charts, and it is clearly a smooth
function. By symmetry, the transition function φ12 in the other direction is also
a smooth function (in fact it’s easy to check that φ12 = φ21 in this example).
Therefore this is a smooth atlas.

Note that it was important to check that both φ12 and φ21 were smooth,
because there do exist smooth bijections whose inverses are not smooth!

The next example shows another way that we might approach the circle.

Example 2.11. Let the group Z act on the real numbers R by translations, so
the orbit of a real number x is the set:

[x] = {x+ n; n ∈ Z}

Let T 1 = R/Z be the set of orbits, i.e. T 1 is the quotient set of R by the
equivalence relation x ∼ y ⇐⇒ x − y ∈ Z. The notation T 1 here means
‘1-dimensional torus’. Let

q : R→ T 1

be the quotient map, which sends x to [x]. We give T 1 the quotient topology,
so a set U ⊂ T 1 is open iff its preimage q−1(U) is open, this means that q is
automatically continuous. Notice that q is also an open mapping, i.e. it sends
open sets to open sets. This is because if W ⊂ R is any open set then q−1(q(W ))
is the union of all translates of W , hence it is an open set, hence q(W ) is an
open set in T 1.

Every equivalence class apart from [0] has a unique representative in the
interval [0, 1], so:

T 1 = [0, 1]/(0 ∼ 1)

i.e. we form T 1 by taking an interval and then gluing the two ends together.
This gives us a circle! In fact T 1 is homeomorphic to S1, via the map:

x 7→
(
cos(2πx), sin(2πx)

)
However, thinking of the circle as T 1 gives a different way to find a smooth
atlas. Let Ũ1 be the open interval

Ũ1 = (0, 1) ⊂ R

and let:
U1 = q(Ũ1) ⊂ T 1

Then the quotient map q : Ũ1 → U1 is a bijection. We let

f1 : U1 → Ũ1 = (0, 1) ⊂ R

be the inverse function to q : Ũ1 → U1, so f1([x]) is the unique representative
of the orbit [x] which lies in the interval (0, 1). Since q is an open mapping,
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Figure 3: The 2-dimensional torus T 2 = R2/Z2.

the function f1 is continuous, and thus a homeomorphism. Hence (U1, f1) is a
co-ordinate chart on T 1.

Now let Ũ2 = (− 1
2 ,

1
2 ) ⊂ R, so we get a second co-ordinate chart by defining

U2 = q(Ũ2) and defining f2 to be the inverse of the quotient map q : Ũ2 → U2.
These two charts cover the whole of T 1, now let’s look at the transition functions.
We have

U1∩U2 = T 1\
{

[0], [ 1
2 ]
}
, f1(U1∩U2) = (0, 1

2 )t( 1
2 , 1), f2(U1∩U2) = (− 1

2 , 0)t(0, 1
2 )

and the transition function is:

φ21 : (0, 1
2 ) t ( 1

2 , 1) −→ (− 1
2 , 0) t (0, 1

2 )

x 7→
{

x, for x < 1
2

x− 1, for x > 1
2

This function is a diffeomorphism; both φ21 and its inverse φ12 are smooth. So
this is a smooth atlas on T 1.

Now let’s do the 2-dimensional version of the previous example:

Example 2.12. Let the group Z2 act on R2 by translations, so the orbits are:

[(x, y)] = {(x+ n, y +m); n,m ∈ Z}

Let T 2 = R2/Z2 be the quotient space. We can picture this as a square with
opposite sides glued together:

T 2 = [0, 1]× [0, 1] / (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y)

(see Figure 3). Hopefully it’s clear that this produces a 2-dimensional torus.
Let q denote the quotient map q : R2 → T 2. Now consider the following four

open subsets of R2:

Ũ1 = (0, 1)× (0, 1), Ũ2 = (− 1
2 ,

1
2 )× (0, 1)

Ũ3 = (0, 1)× (− 1
2 ,

1
2 ), Ũ4 = (− 1

2 ,
1
2 )× (− 1

2 ,
1
2 )

For each i we set Ui = q(Ũi) ⊂ T 2, and then since q : Ũi → Ui is a bijection
we can define fi : Ui → Ũi to be the inverse to q. Using the same arguments as
in Example 2.11 we can show that each (Ui, fi) is a co-ordinate chart, and it’s
easy to check that this is a smooth atlas.

We can generalize this to Tn = Rn/Zn for any n; this gives us an n-
dimensional torus.
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Here’s a trivial but important example:

Example 2.13. Let X = Rn. Now let U0 = X, let Ũ0 = Rn, and let

f0 : U0
∼−→ Ũ0

be the identity function. This is a co-ordinate chart, and since it covers all of
X it is in fact an atlas (consisting of a single chart). Hence Rn is a topological
manifold, of dimension n. Furthermore this is a smooth atlas, because there are
no non-trivial transition functions!

More generally we can let X be any open set inside Rn, then the same
procedure provides a smooth atlas on X (with a single chart).

2.3 Smooth structures

If we’re given a smooth atlas for a topological manifold X then we have a
collection of co-ordinate charts which cover all of X. However, in practice we
might wish to also use other co-ordinate charts, since different co-ordinates are
useful for different problems.

Definition 2.14. Let X be a topological manifold, and let

A = {(Ui, fi); i ∈ I}

be a smooth atlas for X. Let (U, f) be any co-ordinate chart on X. We say
that (U, f) is compatible with the atlas A iff the transition functions between
(U, f) and any chart in A are diffeomorphisms.

In other words, the new chart (U, f) is compatible with the atlas A iff the
union A ∪ {(U, f)} is still a smooth atlas.

Once we’ve fixed a smooth atlas A, it’s not very important to know which
co-ordinate charts are actually in A: the important thing is to know which
charts are compatible with A. These are the charts that we are ‘allowed to use’,
we should disregard all the charts that are not compatible with A.

There are two obvious ways to produce new charts which are compatible
with A.

Lemma 2.15. Let A be a smooth atlas on an n-dimensional topological mani-
fold, and let

f : U
∼−→ Ũ

be a chart in A.

(i) Let V be an open subset of U . Then f |V : V → f(V ) is a co-ordinate
chart on X which is compatible with A.

(ii) Let Ṽ ⊂ Rn be an open set and let g : Ũ → Ṽ be a diffeomorphism. Then
g ◦ f : U → Ṽ is a co-ordinate chart on X which is compatible with A.

Proof. Exercise.

Example 2.16. We saw in Example 2.13 that there is a ‘trivial’ smooth atlas
on the topological manifold X = R. Let A denote this atlas; it contains a single
chart (U0, f0) with U0 = R and f0 the identity function.
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Here are two more co-ordinate charts on X:

U1 = R>0, Ũ1 = R>0, f1(x) =
1

x

U2 = R<1, Ũ2 = R>0, f2(x) =
1

1− x
Since f0 is the identity, the transition function from (U0, f0) to (U1, f1) is simply:

φ10 = f1 : R>0
∼−→ R>0

This is a diffeomorphism, so the chart (U1, f1) is compatible with the atlas A.
Similarly the transition function from (U0, f0) to (U2, f2) is the diffeomorphism

φ20 = f2 : R<1
∼−→ R>0

so (U2, f2) is also compatible with A.
For completeness let’s write down the transition functions between (U1, f1)

and (U2, f2). We have

U1 ∩ U2 = (0, 1), f1(U1 ∩ U2) = R>1, f2(U1 ∩ U2) = R>1

and:

φ21(x̃) =
x̃

x̃− 1
= φ12(x̃)

Notice that in this example the two charts (U1, f1) and (U2, f2) cover the
whole of R, so they form an atlas; in fact they form a smooth atlas, because
φ21 is a diffeomorphism. In an important sense, this atlas is ‘equivalent’ to the
atlas A.

Definition 2.17. Let X be a topological manifold, and let A and B be two
smooth atlases for X. We say that A and B are compatible iff every chart in
B is compatible with the atlas A.

Equivalently, we could say that A and B are compatible iff every chart in A
is compatible with the atlas B, or iff the union A ∪ B is a smooth atlas.

Example 2.18. In Example 2.16 we found two smooth atlases on R, one with a
single chart, A = {(U0, f0)}, and one with two charts, B = {(U1, f1), (U2, f2)}.
These two atlases are compatible.

As we’ve said, knowing exactly which charts are in our atlas A is not so
important, all we really care about is the set of charts that are compatible with
A. The next lemma says that if we replace A by a compatible atlas B then this
information does not change: the set of compatible charts remains the same.

Lemma 2.19. Let X be a topological manifold, and let

A = {(Ui, fi); i ∈ I} and B = {(Uj , fj); j ∈ J}

be two compatible smooth atlases for X. Let (U0, f0) be a co-ordinate chart on
X which is compatible with the atlas A. Then (U0, f0) is also compatible with
B.
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Proof. Pick any chart (Uj , fj) in B and consider the transition function:

φj0 : f0(U0 ∩ Uj)
∼−→ fj(U0 ∩ Uj)

We need to show that both φj0 and φ−1
j0 are smooth functions. Pick any point

U0 ∩ Uj . We’re going to show that φj0 is smooth at the point f0(x), and that
φ−1
j0 is smooth at the point fj(x) = φj0(x). If we can do this for any point x,

then we’ll have shown that both functions are smooth, and proved the lemma.
SinceA is an atlas, there exists some chart (Ui, fi) ∈ A with x ∈ Ui. SetW =

U0 ∩ Uj ∩ Ui, this is an open neighbourhood of x. We have homeomorphisms:

W

f0(W ) fi(W ) fj(W )

f0
fi

fj

The set f0(W ) is an open set inside f0(U0 ∩ Uj), and the composition

fj ◦ f−1
0 : f0(W )

∼−→ fj(W )

is just the restriction of the transition function φj0. Similar statements apply
when we move between fi(W ) and either of the other two charts, so we have
that:

φj0|f0(W ) = φji|fi(W ) ◦ φi0|f0(W )

Since φji and φi0 are smooth by assumption, it follows that φj0 is smooth within
the open set f0(W ), and in particular it is smooth at the point f0(x). Since φ−1

ij

and φ−1
i0 are also smooth, φ−1

j0 is smooth at the point fj(x).

Corollary 2.20. Compatibility is an equivalence relation on smooth atlases.

Proof. Exercise.

Finally we can define the objects we really care about!

Definition 2.21. A smooth manifold is a topological manifold X together
with an equivalence class [A] of compatible smooth atlases on X. We call the
equivalence classes of atlases a smooth structure on X.

If we want to specify a smooth structure on X then we have to give a specific
smooth atlas A, but once we’ve done that then we are free to change A to any
other compatible atlas. Notice that it makes sense to say that a co-ordinate
chart is compatible with a smooth structure, since the set of compatible charts
is independent of the specific choice of atlas.

Example 2.22. Let X = Rn and let A be the ‘trivial’ atlas from Example
2.13. Then (Rn, [A]) is a smooth manifold. This is called the standard smooth
structure on Rn.

Example 2.23. Let X = Sn and let A be the ‘stereographic projection’ atlas
from Example 2.5. Since this is a smooth atlas (Example 2.10), the pair (Sn, [A])
defines a smooth manifold.

13



Example 2.24. Let X = T 1, and let B be the smooth atlas from Example 2.11.
Then (T 1, [B]) is a smooth manifold. Similarly (Tn, [B]) is a smooth manifold,
where B is the smooth atlas on the n-dimensional torus described in Example
2.12.

As we shall see later, our two versions of the circle, (S1, [A]) and (T 1, [B]),
really are ‘the same’ smooth manifold.

Now let’s see an example of two atlases which are not compatible.

Example 2.25. Let X = R again, and consider the function:

g : R→ R

x 7→
{

x, for x ≤ 0
2x, for x > 0

Figure 4: The function g from Example 2.25.

This is a homeomorphism, so (R, g) is a co-ordinate chart on X. Furthermore
the chart covers the whole of X, so it gives us an atlas

C = {(R, g)}

which is automatically smooth since there are no transition functions to check.
Hence (R, [C]) defines a smooth manifold.

However, because the function g is not smooth (it fails to have a derivative
at the point x = 0), this co-ordinate chart is not compatible with the ‘trivial’
atlas A from Example 2.13. So [C] is a different smooth structure from the
standard one [A].

14



Nevertheless, it will turn out that the two smooth manifolds (R, [A]) and
(R, [C]) are still ‘the same’ smooth manifold (in the same sense that S1 and T 1

are ‘the same’).

2.4 Some more examples

We’re now going to show that a smooth atlas doesn’t just determine the smooth
structure on X, it also determines the underlying topology. This is quite useful
for constructing examples of smooth manifolds, as we shall see.

Suppose that X is just a set, not a topological space. Now suppose we have
a subset U ⊂ X, and a bijection

f : U
∼−→ Ũ

where Ũ is an open subset of Rn. This is quite like a co-ordinate chart, but note
that it makes no sense to ask if f is a homeomorphism. Let’s refer to this data
(U, f) as a pseudo-chart on X. Similarly, let’s call a collection A = {(Ui, fi)}
of pseudo-charts on X a pseudo-atlas if the union of all the Ui is the whole of
X (warning : this is not standard terminology, I made up these words).

It still makes sense to talk about ‘transition functions’ for pseudo-charts. If
(U1, f1) and (U2, f2) are two pseudo-charts on X, then f1(U1 ∩U2) is some (not
necessarily open) subset of Ũ1, and f2(U1 ∩ U2) is a subset of Ũ2, and we get a
bijection:

φ21 = f2 ◦ f−1
1 : f1(U1 ∩ U2)→ f2(U1 ∩ U2)

In general there’s no reason for φ21 to be continuous. However, in many natural
examples it will be continuous, and we have the following result:

Proposition 2.26. Let X be a set, and let A = {(Ui, fi)} be a pseudo-atlas for
X. Suppose that for any pair (U1, f1), (U2, f2) of pseudo-charts in A, we have
that:

(a) both f1(U1 ∩ U2) ⊂ Ũ1 and f2(U1 ∩ U2) ⊂ Ũ2 are open subsets, and

(b) the transition function φ21 is continuous.

Then there is a topology on X such that each (Ui, fi) is a co-ordinate chart.
This topology is unique.

So a pseudo-atlas with properties (a) and (b) gives X the structure of a
topological manifold.

Proof. Suppose that we can find such a topology on X. Then each Ui must be
open, by definition. If V ⊂ X is any other open set, then it must satisfy:

fi(V ∩ Ui) is open in Ũi, for all (Ui, fi) ∈ A (2.27)

Conversely, if V ⊂ X is a subset that satisfies this property, then each V ∩ Ui
is open in X, and since

V =
⋃

(Ui,fi)∈A

(V ∩ Ui)

the set V must also be open. So the open sets are precisely the subsets that
satisfy property (2.27). This proves uniqueness.
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To prove existence, we can define the topology on X by declaring that the
open sets are the subsets that satisfy (2.27). We leave it as an exercise to prove
that this does define a topology, and that for this topology each (Ui, fi) is a
co-ordinate chart.

Corollary 2.28. If we make the further assumption that each φ21 is smooth,
then [A] is a smooth structure on the topological manifold X.

Proof. By definition!

Now let’s use this trick to define a manifold called ’real projective space’.

Example 2.29. Let RP1 denote the set of lines through the origin (i.e. 1-
dimensional subspaces) in R2. Any non-zero vector (x, y) ∈ R2 lies in a unique
line, which we denote by x : y. Two vectors lie in the same line iff they’re
proportional, so x : y and λx : λy are the same line for any non-zero λ ∈ R.
Let’s show that we can make RP1 into a smooth 1-dimensional manifold, using
Corollary 2.28.

The y-axis is the line 0 : 1. Any other line x : y has a well-defined gradient
y/x ∈ R, and this gives a bijection:

f1 : U1 = RP1 \ 0:1
∼−→ R

This is a pseudo-chart, and we can get a second one by setting U2 = RP1 \ 1:0
and considering:

f2 : U2
∼−→ R

x :y 7→ x/y

So we have pseudoatlas. Both f1(U1 ∩ U2) and f2(U1 ∩ U2) are the subset
R \ 0 ⊂ R, so condition (a) from Proposition 2.26 holds. The inverse to f1 is
the function

f−1
1 : ỹ 7→ 1: ỹ

so the transition function φ21 is:

φ21 : R \ 0
∼−→ R \ 0

ỹ 7→ 1/ỹ

Both φ21 and its inverse φ12 are continuous, and smooth. So this determines a
topology on RP1 making it a topological manifold, and this a smooth atlas.

In fact RP1 is just the circle again. To see this observe that there’s a well-
defined map:

R/Z→ RP1

x 7→ cosπx : sinπx

It should be clear that this is a bijection between T 1 and RP1, and it’s not too
hard to prove that it’s a homeomorphism. It will also be straightforward to
show that RP1 is the same smooth manifold as T 1 (and hence also the same as
S1), once we’ve learnt how to say that precisely.

However, in higher dimensions we get some genuinely new examples:
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Example 2.30. Let RPn denote the set of lines in Rn+1, and for a non-zero
vector (x0, ..., xn) we denote the corresponding line by x0 : ... : xn. For each
i ∈ [0, n] we can get a pseudo-chart on RPn by setting Ui = {x0 : ... :xn, xi 6= 0}
and:

fi : Ui → Rn

x0 : ... :xn 7→
(
x0

xi
, ...,

xi−1

xi
,
xi+1

xi
, ...,

xn
xi

)
This is a bijection, its inverse is:

f−1
i : (x̃1, ..., x̃n) 7→ x̃1 : ... : x̃i :1 : x̃i+1 : ... : x̃n

If we take a pair of these charts (Ui, fi) and (Uj , fj) (with i < j say) then the
transition function is

φji : Rn \ {x̃j = 0} ∼−→ Rn \ {ỹi+1 = 0}

(x̃1, ..., x̃n) 7→ 1

x̃j

(
x̃1, ..., x̃i, 1, x̃i+1, ..., ĵ, ..., x̃n

)
(where the ĵ indicates that we skip the component x̃j/x̃j). This is a smooth
function between open subsets of Rn. By Corollary 2.28 this gives RPn the
structure of a smooth manifold.

If we generalize this example by considering k-dimensional subspaces of Rn,
rather than 1-dimensional subspaces, we get ‘Grassmannian’ manifolds. This
gets a bit more fiddly than our previous examples, and we won’t go into all the
details.

Example 2.31. For any k ∈ [0, n], we define Gr(k, n) to be the set of k-
dimensional subspaces of Rn (so RPn = Gr(1, n + 1)). We claim that we can
give Gr(k, n) the structure of a smooth manifold, with dimension k(n− k).

Suppose S ⊂ Rn is a k-dimensional subspace. If we fix a basis for S then this
determines a rank k matrix M ∈ Matk×n(R) whose rows are the basis vectors.
Changing basis in S corresponds exactly to multiplying M by an invertible k×k
matrix, so Gr(k, n) is the quotient set:

{M ∈ Matn×k(R), rank(M) = k} / GLk(R)

Now take one of these matrices M , and split it into two blocks

M =
(
M ′ |M ′′

)
where M ′ is a k × k matrix and M ′′ is a k × (n − k) matrix. Suppose M ′ is
invertible, so we can multiply M by (M ′)−1. Then M is equivalent in Gr(k, n)
to a matrix of the form (

Ik |N
)

where Ik is the k × k identity matrix and N ∈ Matk×(n−k)(R). Furthermore
there is exactly one point in the orbit of M that has this form. So this gives us
a bijection between Matk×(n−k)(R) and a subset of Gr(k, n), namely the set of
orbits [M ] such that M ′ is invertible.
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This gives us one pseudo-chart on Gr(k, n). To get another pseudo-chart,
fix a subset J ⊂ {1, ..., n} of size k, and let M ′J be the k× k matrix obtained by
taking the corresponding set of columns from M (so in our first pseudo-chart
were setting J = {1, ..., k}). If M ′J is invertible then (M ′J)−1M is a matrix of
a special form: if you extract the J columns from it then you get the identity
matrix Ik. For example, if n = 5, k = 2, and J = {1, 3} then

(M ′J)−1M =

(
1 a 0 b c
0 d 1 e f

)
for some 2 × 3 matrix

(
a b c
d e f

)
. So we get a bijection between Matk×(n−k)(R)

and the subset:
{[M ], det(M ′J) 6= 0} ⊂ Gr(k, n)

To see that these pseudo-charts cover the whole of Gr(k, n) we need to quote a
result from linear algebra: if every k × k minor of a matrix M vanishes (i.e. if
det(M ′J) = 0 for each J) then M has rank less than k.

Finally, by staring at this definition you should be able to convince yourself
that the transition functions between these pseudo-charts are all given by ra-
tional functions, so they are smooth. So this defines the structure of a smooth
manifold on Gr(k, n).

Now that we’ve laid down some technical foundations, we can get on with
actually studying some manifolds. From this point on we’re going to assume
that ‘everything in sight is smooth’, i.e. we’re going to say

• ‘Manifold’ when we mean ‘smooth manifold’.

• ‘Atlas’ when we mean ‘smooth atlas’.

• ‘Co-ordinate chart’ when we mean ‘compatible co-ordinate chart’.
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3 Submanifolds

3.1 Definition of a submanifold

Consider the following two subsets of R2:

Z1 = {(x, sinx)}
Z2 = {(x, x), x ≤ 0} ∪ {(x, 2x), x ≥ 0}

So Z1 is the graph of the function x 7→ sinx, and Z2 is the graph of the function
g from Example 2.25 and Figure 4. The subset Z1 is nice and smooth, it looks
like a (1-dimensional) manifold. But Z2 doesn’t look like a manifold, it has a
sharp corner at the origin.

However, both of these subsets are homeomorphic to R, in fact the graph
of any continuous function R → R is always homeomorphic to R. So Z2 is
certainly a topological manifold, and we could equip it with a smooth atlas if
we wanted to. So why doesn’t it look like a smooth manifold?

The problem is (of course) the way in which Z2 is sitting inside the ambient
space R2. To understand what’s happening precisely, we need to introduce the
concept of a submanifold.

Recall that an affine subspace of Rn is a translation of a linear subspace,
i.e. a subset of the form

A = {x+ v; x ∈W} ⊂ Rn

for some vector v ∈ Rn and some linear subspace W ⊂ Rn. Linear subspaces
are special case of affine subspaces.

Roughly speaking: a manifold is a space X that locally looks like Rn, and a
submanifold is a subset of X which locally looks like an affine subspace in Rn.

Example 3.1. Consider the subset Z1 = {(x, sinx)} ⊂ R2 again. Now let
U = R2, Ũ = R2, and:

f : U → Ũ

(x, y) 7→ (x, y − sinx)

It’s easy to check that f is a diffeomorphism, so (U, f) defines a co-ordinate
chart on R2 (compatible with the standard smooth structure). Futhermore,
f(Z1) is the subset:

{(x, 0)} ⊂ Ũ
So in these co-ordinates, Z1 is just the linear subspace R× {0} ⊂ R2.

Now we write down the formal definition.

Definition 3.2. Let X be a (smooth) manifold. Let Z be any subset of X. We
say that Z is an m-dimensional submanifold of X iff, for any point z ∈ Z,
there exists a (compatible) co-ordinate chart on X

f : U
∼−→ Ũ ⊂ Rn

with z ∈ U , and an m-dimensional affine subspace A ⊂ Rn, such that:

f(U ∩ Z) = Ũ ∩A
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In Example 3.1 we proved that the subset Z1 inside R2 is a 1-dimensional
submanifold (when R2 is equipped with the standard smooth structure). The
subset Z2 is not a submanifold, but we shall not prove this fact now.

Obviously any affine subspace A ⊂ Rn is a submanifold of Rn (with its
standard smooth structure), just use the trivial chart on Rn.

Example 3.3. Recall our definition of S1:

S1 =
{
x2 + y2 = 1

}
⊂ R2

Let’s prove that this subset is a (1-dimensional) submanifold of R2. We just
need to use polar co-ordinates! Set

U1 = R2 \ {(x, 0), x ≤ 0} , Ũ1 = R>0 × (−π, π)

and:

f−1
1 : Ũ1 → U1

(r, θ) 7→ (r cos θ, r sin θ)

Then it’s clear that f−1
1 is a smooth bijection. It’s slightly less obvious that the

inverse function f1 : U1 → Ũ1 is also smooth, but this can be shown using the
Inverse Function Theorem (more on this shortly). Hence (U1, f1) is a co-ordinate
chart on R2, compatible with the standard atlas. We have

f(S1 ∩ U1) = {(1, θ), θ ∈ (−π, π)} ⊂ Ũ1

which is the intersection of Ũ1 with the 1-dimensional affine subspace {1}×R ⊂
R2. Every point on S1 except for (−1, 0) lies in U1, so this co-ordinate chart
demonstrates that S1 satisfies the submanifold condition at every point except
for (−1, 0). To deal with this final point we can take a second co-ordinate chart
(U2, f2) using polar co-ordinates with θ ∈ (0, 2π) (so we delete the positive
x-axis).

If Z ⊂ X is an m-dimensional submanifold, then Z is automatically a topo-
logical space because we can give it the subspace topology. We claim that in fact
Z itself is a topological manifold of dimension m (as the name suggests!), and
moreover it has a natural smooth structure induced from the smooth structure
on X. To prove this, we first need to understand how to get co-ordinate charts
on a submanifold.

Let’s introduce a little more terminology. For any m ∈ [0, n], let us define
the standard affine subspace (of dimension m) to be the subspace

{(x1, ..., xm, 0, ..., 0)} ⊂ Rn

and we’ll just write Rm ⊂ Rn when we mean this standard subspace.

Lemma 3.4. If X is an n-dimensional manifold, and Z ⊂ X is an m-dimensional
submanifold, then for any point z ∈ Z there exists a chart (U, f) on X contain-
ing z such that f(U∩Z) is the intersection of Ũ with the standard affine subspace
Rm ⊂ Rn.
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Proof. Pick z ∈ Z. By definition, there is a chart f : U → Ũ around z such
that f(U ∩ Z) is the intersection of Ũ with some affine subspace A ⊂ Rn. It’s
elementary to see that there is an invertible affine map

τ : Rn → Rn

i.e. the composition of an invertible linear map and a translation, which maps
A to the standard subspace Rm (just pick an appropriate basis). Since τ is a
diffeomorphism we can form a new chart (U, τ ◦ f), and this has the required
property.

So around any point in a submanifold Z we can always choose co-ordinates
which make Z look like the standard subspace. We can use this fact to produce
co-ordinate charts on Z, as follows. Pick a chart

f : U
∼−→ Ũ

on X as in the previous lemma. The intersection V = Z ∩ U is an open set in
Z, and f induces a homeomorphism:

g : V
∼−→ Ṽ = Ũ ∩ Rm

Since Ṽ is an open set in Rm, this is a co-ordinate chart on Z.
The procedure we’ve just performed is simple, but important. Make sure

you understand it!

Example 3.5. In Example 3.3 we showed that S1 is a submanifold of R2. Let
(U1, f1) be the polar co-ordinate chart on R2 from that example. Then as we
saw, f1 induces a homeomorphism between

V1 = S1 ∩ U1 = U1 \ (−1, 0)

and the intersection of Ũ1 with the affine subspace {r = 1}. As in Lemma 3.4
we can compose f1 with the affine map τ : (r, θ) 7→ (θ, r− 1) to get a new chart
on R2:

τ ◦ f1 : U1
∼−→ (−π, π)× (−1,∞)

(r cos θ, r sin θ) 7→ (θ, r − 1)

Then the image of V1 in these co-ordinates is the subset (−π, π)× {0}, i.e. the
intersection of the standard subspace R ⊂ R2 with the codomain of the chart.
So the induced chart on S1 is:

g1 : V1
∼−→ Ṽ1 = (−π, π) ⊂ R

(cos θ, sin θ) 7→ θ

We can also do this procedure starting from the polar co-ordinate chart (U2, f2)
with domain U2 = R2 \{x ≥ 0} and codomain R>0×(0, 2π). Then the resulting
chart on S1 is:

g2 : V2 = S1 \ (1, 0)
∼−→ Ṽ2 = (0, 2π) ⊂ R

(cos θ, sin θ) 7→ θ
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Together, these two charts form an atlas for S1. Let’s check that they form a
smooth atlas; we’ll do it in a way that’s a bit more complicated than necessary,
because it’s helpful for understanding the proof of the next lemma.

Consider the two charts (U1, τ ◦ f1) and (U2, τ ◦ f2) on R2, which both map
S1 to the standard subspace. The transition function between them is:

φ21 :
(
(−π, 0) ∪ (0, π)

)
× R>−1

∼−→
(
(0, π) ∪ (π, 2π)

)
× R>−1

(θ, r′) 7→
{

(θ, r′) for θ > 0
(θ + 2π, r′) for θ < 0

Notice that this function maps the subset
(
(−π, 0)∪ (0, π)

)
× {0} to the subset(

(0, π) ∪ (π, 2π)
)
× {0}; this had to be true because these are subsets corre-

sponding to S1. So if we restrict φ21 to the subset {r′ = 0} we get an induced
function:

ψ21 :
(
(−π, 0) ∪ (0, π)

) ∼−→
(
(0, π) ∪ (π, 2π)

)
θ 7→

{
θ for θ > 0

θ + 2π for θ < 0

Now consider the induced charts (V1, g1) and (V2, g2) on S1; the transition
function between these two charts is exactly the function ψ21. It’s evidently a
diffeomorphism, so this is indeed a smooth atlas for S1.

It’s a straight-foward exercise to check that this smooth atlas is compatible
with the ‘stereographic projection atlas’ from Example 2.4; just compute all the
transition functions. Hence it defines the same smooth structure as the one we
already have.

Now we generalize this example.

Lemma 3.6. Let X be an n-dimensional manifold, and let Z ⊂ X be an m-
dimensional submanifold of X. Let (U1, f1) and (U2, f2) be two charts on X
each of which maps Z to the standard subspace. Let (V1, g1) and (V2, g2) be the
two induced charts on Z, and let ψ21 be the transition function between them.
Then ψ21 is smooth.

Proof. To simplify our notation let’s set U = U1∩U2, and V = V1∩V2 = U ∩Z.
By assumption, we have:

f1(V ) = f1(U) ∩ Rm and f2(V ) = f2(U) ∩ Rm

We know we have a smooth transition function

φ21 : f1(U)
∼−→ f2(U)

between the charts on X, and restricting this to the subspace Rm gives a smooth
function:

ψ̂21 = φ21|Rm : f1(V ) ↪→ f2(U)

However, we also know that φ21 must map f1(V ) to f2(V ), so the image of

ψ̂21 must be the subset f2(U) ∩ Rm. So if we think of ψ̂21 as an n-tuple of
smooth real functions defined on f1(V ), then the last n−m of these functions
are identically zero. The first m of these functions define a smooth map

ψ21 : f1(V )
∼−→ f2(V )

but this is exactly the transition function from (V1, g1) to (V2, g2).
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Proposition 3.7. Let X be an n-dimensional manifold, and let Z ⊂ X be
an m-dimensional submanifold of X. Then Z is an m-dimensional topological
manifold, and it carries a smooth structure induced from the smooth structure
on X.

Proof. Let C denote the set of all charts on X which map Z to the standard
subspace Rm ⊂ R. By Lemma 3.4, for any point z ∈ Z there is a chart in C
containing z. This induces a co-ordinate chart (V, g) on Z with codomain in
Rm, and with z lying in V . This proves that Z is an m-dimensional topological
manifold.

If we pick any set of charts A ⊂ C whose domains cover Z, then the induced
set of charts on Z form an atlas. By Lemma 3.6 this atlas is smooth. The
resulting smooth structure is independent of our choices, because any two atlases
for Z produced by this method will be compatible with each other (by Lemma
3.6 again).

Example 3.8. Recall the definition of real projective space RPn from Example
2.30, with its atlas {(Ui, fi), i ∈ [0, n]}. The inclusion of the standard subspace
Rm+1 ⊂ Rn+1 induces a well-defined map

RPm ↪→ RPn

x0 : ... :xm 7→ x0 : ... :xm :0 : ... :0

which is clearly an injection. Let’s show that the image of this map is a sub-
manifold in RPn.

Let Z ⊂ RPn denote the image. At any point in Z at least one of x0, ..., xm
must be non-zero, so we must be in the domain of at least one of the co-
ordinate charts (U0, f0), ..., (Um, fm). For any of these charts we have Ũi = Rn,
and fi(Ui ∩ Z) is precisely the standard subspace Rm ⊂ Rn. So Z is indeed an
m-dimensional submanifold of RPn.

By Proposition 3.7 we get an induced smooth structure on Z = RPm, by
considering co-ordinate charts on RPn that make Z look like the standard affine
subspace and using them to induce co-ordinate charts on Z. We’ve just seen
that the charts (U0, f0), ..., (Um, fm) are of this form, and the charts they induce
on Z are exactly the charts we used to define the smooth structure on RPm. So
this induced smooth structure is the same as the one we have already.

3.2 A short detour into real analysis

Before we can continue our study of submanifolds, we need to recall a few things
from real analysis.

Suppose we have a smooth function:

h = (h1, ...., hk) : Rn → Rk

If we fix a point x = (x1, ..., xn) ∈ Rn, recall that the derivative of h at x is the
linear map

Dh|x : Rn → Rk

given by the k-by-n matrix

Dh|x =

(
∂hi
∂xj

∣∣∣∣
x

)
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of all partial derivatives of the components of h, evaluated at the point x. This
is also known as the Jacobian of h (at the point x). This definition also makes
sense if h is only defined in some open neighbourhood of x.

We have the following fundamental result, which is usually proved in a first
course on multi-variable real analysis.

Theorem 3.9 (Inverse Function Theorem). Let U be an open subset of Rn,
and let

F : U → Rn

be a smooth function. Let x ∈ U be a point such that the derivative of F at x

DF |x : Rn → Rn

is an isomorphism. Then there exists an open neighbourhood V ⊂ U of x such
that the function

F : V → F (V ) ⊂ Rn

is a diffeomorphism.

If we already know that our function F is a smooth bijection, we can use
the Inverse Function Theorem to test if it’s a diffeomorphism:

Corollary 3.10. If F : U →W is a smooth bijection between two open subsets
of Rn, and the derivative DF |x is an isomorphism for all points x ∈ U , then
the inverse function F−1 : W → U is also smooth.

Proof. This follows immediately.

Example 3.11. In Example 3.3 we used the function:

F : R>0 × (−π, π)→ R2 \ {x < 0}
(r, θ) 7→ (r cos θ, r sin θ)

This is evidently a smooth bijection, and Corollary 3.10 can be used to prove
that it is a diffeomorphism. Hence f = F−1 is a chart on R2 compatible with
the standard smooth structure.

3.3 Level sets in Rn

In this section we’re going to introduce a very general trick for producing sub-
manifolds of Rn.

Let’s think again about our two subsets

Z1 = {y − sinx = 0} ⊂ R2

which is a submanifold (Example 3.1), and

Z2 = {y − g(x) = 0} ⊂ R2

(where g is the function defined in Example 2.25), which is not a submanifold.
We also know that the subset

S1 =
{
y2 + x2 = 1

}
⊂ R2
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is a submanifold (Example 3.3). All of these subsets are of the form

{h(x, y) = α}

for some function h : R2 → R and some real number α ∈ R. So we should ask:
when is such a subset in fact a submanifold?

More generally, if h is a function

h : Rn → Rk

and α ∈ Rk, when is the subset {h(x) = α} ⊂ Rn a submanifold? This is an
important question, which we will explore in some detail.

The subsets {h(x) = α} ⊂ Rn are called the level sets of h. Firstly, note
that functions

h1(x, y) = y − sinx, and h3(x, y) = x2 + y2

are both smooth functions from R2 to R, whereas the function

h2(x, y) = y − g(x)

is not a smooth function (since g is not smooth). One might reasonably guess
that the level sets of h are submanifolds provided that h is a smooth function.
Unfortunately this is not enough, as the next example shows.

Example 3.12. Consider the smooth function:

h : R2 → R
(x, y)→ xy

For any α ∈ R let’s denote the level set of h by

Zα = {h(x, y) = α} ⊂ R2

(see Figure 5).
If α 6= 0, then Zα is the set {(x, α/x);x ∈ R 6=0}, it’s both branches of a

hyperbola. This a (1-dimensional) submanifold of R2: consider the co-ordinate
chart with

U = Ũ = {x 6= 0} ⊂ R2

and:

f : U → Ũ

(x, y) 7→ (x, y − α/x)

Note that this really is a co-ordinate chart (f is a diffeomorphism), and that:

f(Zα ∩ U) = {(x, 0)} ⊂ Ũ

Since Zα is entirely contained in U , this demonstrates that Zα is a submanifold
for α 6= 0.

However, for α = 0, the level set

Z0 = {xy = 0} = {x = 0} ∪ {y = 0}

consists of both co-ordinate axes. This certainly doesn’t look like a submanifold,
because of the ‘singularity’ at the point where the two axes cross. In fact one
can prove that Z0 is not even a topological manifold.
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Figure 5: Level sets of h = xy.

So we need to find an additional condition to guarantee that a level set of h
is a submanifold. In fact we must also look at the derivative of h.

Definition 3.13. Let h : Rn → Rk be a smooth function. A point x ∈ Rn is
called a regular point of h iff the derivative

Dh|x : Rn → Rk

of h at x is a surjection. If x is not a regular point of h then it’s called a critical
point.

Definition 3.14. A point α ∈ Rk is called a regular value of h iff every point
in the level set

h−1(α) ⊂ Rn

is a regular point of h. If α is not a regular value of h then it’s called a critical
value.

Notice that we can’t have any regular points unless k ≤ n. Also note that
all these definitions work perfectly well if h is only defined on an open subset of
Rn.

Example 3.15. Let h be the function h(x, y) = xy we considered in Example
3.12. If we fix a point (x, y) ∈ R2, then the derivative of h at this point is the
1-by-2-matrix (or linear map R2 → R):

Dh|(x,y) = (y, x)

This is a surjection provided that at least one of x or y is not zero, so the origin
(x, y) = (0, 0) is a critical point of h and all other points are regular points.
Hence the only critical value of h is α = 0; if α ∈ R is not zero then it is a
regular value.
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Comparing this with Example 3.12, we see that the level sets Zα are sub-
manifolds provided that α is a regular value of h (i.e. for α 6= 0). However for
the critical value α = 0, the level set Z0 contains a critical point (0, 0), and Z0

fails to be a submanifold near this point.

Here is the general result:

Proposition 3.16. Let h : Rn → Rk be a smooth function. If α ∈ Rk is a
regular value of h then the level set

Zα = h−1(α) ⊂ Rn

is a submanifold of Rn, of dimension n− k.

If X is any n-dimensional manifold, and Z ⊂ X is an m-dimensional sub-
manifold, then the difference

n−m

is called the codimension of Z. So the proposition says that the level set Zα ⊂ Rn
is a submanifold of codimension k (provided that α is a regular value). These
numbers should make intuitive sense: we start with a space having n degrees-
of-freedom, then we impose k equations, so we have n − k degrees-of-freedom
left.

The proof of Proposition 3.16 will follow easily from another corollary of the
Inverse Function Theorem, called the Implicit Function Theorem. For k ≤ n,
let’s define the standard projection to be the linear map

π : Rn → Rk

(x1, ..., xn) 7→ (xn−k+1, ..., xn)

which projects onto the last k co-ordinates (so the kernel of π is the standard
subspace Rn−k ⊂ Rn). Since π is linear, for any point x ∈ Rn we have Dπ|x = π,
and since this is a surjection x is a regular point of π. The Implicit Function
Theorem says that near a regular point any smooth function can be made to
look like the standard projection π, by choosing the right co-ordinates.

Theorem 3.17 (Implicit Function Theorem). Let U ⊂ Rn be an open subset,
and let

h : U → Rk

be a smooth function, where k ≤ n. Let z ∈ U be a regular point of h. Then
there exists an open neighbourhood V ⊂ U of z, a second open subset Ṽ ⊂ Rn,
and a diffeomorphism f : V

∼−→ Ṽ , such that

h ◦ f−1 = π : Ṽ → Rk

is the standard projection (restricted to Ṽ ).

Before we give the proof let’s look at what this is saying. Let’s write
(h1, ..., hk) for the components of h. Then we’re looking for a diffeomorphism
f = (f1, ...., fn) such that π ◦ f = h, so fn−k+i = hi for each i ≤ k. In other
words, we’re looking for a co-ordinate system around z where h1, ..., hk are the
last k co-ordinates. The theorem says that if z is regular then this is always
possible.
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Proof. Let x1, ..., xn be the standard co-ordinates on Rn. The Jacobian Dh|z is
a k-by-n real matrix, and we’re assuming it has rank k. So the columns of this
matrix span Rk, and therefore some subset of the columns must form a basis
for Rk. After re-ordering the co-ordinates xj if necessary, we may assume that
the last k columns form a basis, i.e. the k-by-k matrix

M =


∂h1

∂xn−k+1

∣∣∣
z

... ∂h1

∂xn

∣∣∣
z

...
∂hk

∂xn−k+1

∣∣∣
z

... ∂hk
∂xn

∣∣∣
z

 : Rk → Rk (3.18)

is invertible. Now consider the function:

f : U → Rn

x 7→ (x1, ..., xn−k, h1(x), ..., hk(x))

The derivative of f at our point z is an n-by-n matrix of the form

Df |z =

(
In−k 0
? M

)
where M is the matrix (3.18), and In−k is the identity matrix. Hence detDf |z =
detM which is non-zero by assumption. Applying the Inverse Function Theorem
(Theorem 3.9), we see that there is an open set V ⊂ U containing z such that
the function

f : V → f(V ) ⊂ Rn

is a diffeomorphism. Then π ◦ f = h by construction.

Notice that this proof tells us exactly how to construct the required co-
ordinate system: for the last k co-ordinates we use h1, ..., hk, and for the first
n − k co-ordinates we use an appropriate subset of xi’s. Remember that we
can’t necessarily use x1, ..., xn−k because of the re-ordering step in the proof.

Now we can prove that level sets at regular values are always submanifolds.

Proof of Proposition 3.16. Pick a regular value α ∈ Rk of the function h : Rn →
Rk. Pick any point z ∈ Zα, so z is a regular point. By the Implicit Function
Theorem (Theorem 3.17) there is a chart f : V

∼−→ Ṽ around the point z in
which h is just the standard projection function π : Rn → Rk (restricted to Ṽ ).
Then

f(Zα ∩ V ) = Ṽ ∩ π−1(α)

and π−1(α) is an affine subspace of Rn of dimension n− k. So the submanifold
condition holds at all points z ∈ Zα.

Example 3.19. Let’s prove that Sn is a submanifold of Rn+1. Consider the
smooth function:

h : Rn+1 → R
h : (x0, ..., xn) 7→ x2

0 + ...+ x2
n

The derivative of h at a point (x0, ..., xn) is the 1-by-(n+ 1) matrix

(2x0, ...., 2xn) : Rn+1 → R
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which is a surjection if at least one of the xi is not zero. Hence the origin is
the only critical point of h, and 0 ∈ R is the only critical value. For α > 0, the
level set Zα = h−1(α) is a n-dimensional sphere of radius

√
α. So this sphere is

a codimension-1 submanifold of Rn+1.
If α < 0 then Zα = φ (the empty set), technically this is also a codimension-1

submanifold of Rn, but it’s less interesting!

We can generalize slightly by considering level sets of functions which are
only defined in an open set of Rn. Take an open set X ⊂ Rn, and consider a
smooth function

h : X → Rk

(and recall from Example 2.13 that X is an n-dimensional manifold). Because
the proof of Proposition 3.16 was entirely local, it shows immediately that the
level sets

h−1(α) ⊂ X

are submanifolds of X, provided that α is a regular value.

Example 3.20. Consider the smooth function:

r : R2 \ (0, 0)→ R

(x, y) 7→
√
x2 + y2

Now let X be the open set

X = {(x, y, z); (x, y) 6= (0, 0)} ⊂ R3

and let h be the smooth function:

h : X → R
(x, y, z) 7→ (r − 2)2 + z2

The derivative of h at (x, y, z) is the 1-by-3 matrix:

(2x(r − 2)/r, 2y(r − 2)/r, 2z) : R3 → R

This only fails to be a surjection if z = 0 and r = 2, meaning that the only
critical value of h is α = 0. For any other value of α, the level set Zα is a
2-dimensional manifold.

If α lies in the interval (0, 4) then Zα is the surface-of-revolution of the graph
drawn in Figure 6, so it’s a 2-dimensional torus.

Proposition 3.16 gives us an easy way to find new manifolds: just pick any
smooth function from Rn (or an open set in Rn) to Rk and then look at one
of the level sets Zα. Provided that α is a regular value, the level set Zα is
a submanifold of Rn, and then by Proposition 3.7 Zα automatically gets the
structure of a manifold.

How can we find some charts on Zα? In Section 3.1 we discussed how to
get charts on a general submanifold: we have to find a chart on the ambient
manifold which maps the submanifold to the standard affine subspace. In the
case of level sets in Rn this is easy, because the Implicit Function Theorem tells
us an explicit way to do it.
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Figure 6: Level set of (r − 2)2 + z2.

Example 3.21. Let’s consider the submanifold Sn = h−1(1) ⊂ Rn+1, where h
is the function from Example 3.19, and let’s find some charts on Sn by inducing
them from charts on Rn+1. In Example 3.5 we did this in an ad hoc way for the
case n = 1, now let’s do it in a systematic way for all n by following the proof
of the Implicit Function Theorem.

Let’s start by finding a chart on Sn which includes the point z = (0, ..., 0, 1).
The derivative of h at this point z is the matrix (0, ..., 2), and the final entry
spans the 1-dimensional vector space R. So if we set

f = (x0, ..., xn−1, h) : Rn+1 → Rn+1

then det(Df)|x is not zero, and hence f must be a diffeomorphism on some
open neighbourhood of z. In fact we can use the neighbourhood U = {xn > 0};
it’s clear that f is injective on U , and det(Df) = 2xn is never zero in this set,
so Corollary 3.10 applies. Hence (U, f) is a chart on Rn+1.

This chart maps Sn to the affine subspace {x̃n = 1}, but we can just compose
it with the obvious translation τ to get a new chart (U, τ ◦ f) which maps Sn to
the standard subspace Rn ⊂ Rn+1. Then we get our induced chart on Sn, its
domain is V = Sn ∩ {xn > 0}, and the co-ordinates are simply:

g : V → Rn

(x0, ..., xn) 7→ (x0, ..., xn−1)

The codomain Ṽ of this chart is the open unit ball.
We could repeat this procedure with the obvious variations, and we end

up with an atlas for Sn with 2(n+ 1) charts, having domains {±xi > 0} ∩ Sn.
There is no need to check if this atlas is smooth because it follows automatically
from Lemma 3.6. In the case n = 1, Lemma 3.6 also tells us that this atlas is
compatible with the ‘polar co-ordinates’ atlas from Example 3.5.

However we should verify that this atlas is compatible with the stereographic
projection atlas from Example 2.5, so they both define the same smooth struc-
ture. This is a simple exercise in computing transition functions.

Example 3.22. Let h be the function h(x, y, z) = (r − 2)2 + z2 from Example
3.20, defined on the open set X = {(x, y) 6= (0, 0)} ⊂ R3. Let Z be the level set
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Z = h−1(1). We saw that this was a submanifold, so let’s find some charts on
it.

First consider the function

f1 = (x, y, h− 1) : R3 → R3

(note that we’re using h − 1 instead of h, i.e. we’ve done the translation step
already). Then det(Df1) = ∂zh = 2z. It’s clear that f1 is an injection on the
set U1 = {z > 0}, so it is a diffeomorphism on that subset. Hence (U1, f1) is a
chart on X, and it maps Z to the standard subspace R2 ⊂ R3. The induced
chart on Z is

g1 : V1 = Z ∩ {z > 0} −→ R2

(x, y, z) 7→ (x, y)

and this chart has codomain the open annulus Ṽ1 = {1 < r < 3}.

Intuitively, critical points and critical values are rather rare. If we pick
a point x ∈ Rn ‘at random’, then it is vanishingly unlikely that the derivative
Dh|x is not surjective, since ‘almost all’ k-by-n matrices are surjective (provided
that k ≤ n). This suggests that ‘almost all’ level sets of a smooth function are
submanifolds. This intuition is correct, and can be turned into a result known
as Sard’s Theorem. However it would take us on a significant detour to even
state this result precisely.
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4 Smooth functions

4.1 Definition of a smooth function

Suppose we have a manifold X, and a function:

h : X → R

If X = Rn, or an open set in Rn, then know what it means to say that h is a
smooth function. If X is an arbitrary manifold, how should we decide if h is
‘smooth’ or not?

The answer is that we should ‘look at h in co-ordinates’. If we pick a co-
ordinate chart

f : U
∼−→ Ũ ⊂ Rn

on X then we can consider the function

h̃ = h ◦ f−1 : Ũ → R

We should think of h̃ as the function h written in this choice of co-ordinates. If
h̃ is a smooth function, then we should declare that h is also smooth, at least
within the open set U ⊂ X. If we want to be more specific then we can choose
a particular point x ∈ U , and declare that h is smooth at x iff the function h̃ is
smooth at the point f(x).

However, there might be a problem with this definition: it might depend on
which co-ordinates we chose. Let’s check that it doesn’t. Suppose that (U1, f1)
and (U2, f2) are two co-ordinate charts on X, both containing the point x. Then
the functions

h̃1 = h ◦ f−1
1 and h̃2 = h ◦ f−1

2

are related by the transition function φ12 between the two charts:

h̃2 = h̃1 ◦ φ12

(note that this equality only makes sense on the open set f2(U1 ∩ U2) ⊂ Ũ2

where both sides are defined). Since φ12 is a diffeomorphism, the function h̃2 is
smooth at the point f2(x) iff the function h̃1 is smooth at the point f1(x).

So if h looks smooth (at x) in one co-ordinate chart, then it will look smooth
(at x) in any co-ordinate chart. Let’s record this definition formally:

Definition 4.1. Let X be a manifold, let

h : X → R

be a function, and let x be a point in X. We say that h is smooth at x iff, for
any co-ordinate chart

f : U → Ũ ⊂ Rn

with x ∈ U , the function
h ◦ f−1 : Ũ → R

is smooth at the point f(x). We say that h is smooth everywhere, or simply
smooth, iff h is smooth at all points x ∈ X.
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Notice that h is smooth everywhere iff, for any co-ordinate chart (U, f), the
function h ◦ f−1 is smooth. However if want to check if h is smooth we don’t
need to check every co-ordinate chart, it’s enough to pick an atlas {(Ui, fi)} for
X, and verify that each function h◦ f−1

i is smooth. Also notice that if X = Rn,
or an open set in Rn (with the standard smooth structure), it’s clear that this
definition of a smooth function agrees with the ordinary definition.

Example 4.2. Let X = S1 =
{
x2 + y2 = 1

}
⊂ R2, and let:

h : S1 → R
(x, y) 7→ x2

Let’s verify that h is a smooth function. In Example 3.21 we constructed a
convenient atlas on S1, with four charts. The first chart has domain U1 =
S1 ∩ {y > 0}, codomain Ũ1 = (−1, 1) ⊂ R, and co-ordinates f1 : (x, y) 7→ x. In
this chart the function h becomes

h̃1 = h ◦ f−1
1 : (−1, 1)→ R

x 7→ x2

which is smooth at all points. The second chart has domain U2 = S1 ∩{x > 0},
codomain Ũ2 = (−1, 1) again, and co-ordinates f2 : (x, y) 7→ y. Since f−1

2 sends

y to (
√

1− y2, y), we see that in this chart h becomes

h̃2 : y 7→ 1− y2

which is also smooth at all points. The remaining two charts (which have
domains S1 ∩ {y < 0} and S1 ∩ {x < 0}) are similar.

Evidently we could replace h with any other smooth function of x and y in
this example, and it would again define a smooth function on S1.

It’s obvious how to generalize Definition 4.1 to get a definition of when a
function

h : X → Rk

is smooth. But why stop there? What we really need is a definition of a smooth
function between any two manifolds.

Suppose X is a manifold of dimension n, and Y is a manifold of dimension
k, and we have a function:

H : X → Y

How should we decide if H is ‘smooth’ or not? Or more specifically, if we pick
a point x ∈ X, how should we decide if H is ’smooth’ at this point?

Again, we need to look at H in co-ordinates. So, pick a co-ordinate chart on
X

f : U
∼−→ Ũ ⊂ Rn

with x ∈ U , and pick a co-ordinate chart on Y

g : V
∼−→ Ṽ ⊂ Rk

with H(x) ∈ V . To study the function H in co-ordinates (near the point x) we
should look at the composition

g ◦H ◦ f−1 : Ũ → Ṽ
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(note that we need to assume that H(U) is contained in V for this to be defined).
This is a function between an open set in Rn and an open set in Rk, so it makes
sense to ask if it is a smooth function.

Definition 4.3. Let X and Y be two manifolds, of dimension n and k, and let

H : X → Y

be a continuous function. Fix a point x ∈ X. We say that H is smooth at x iff
there exists a chart (U, f) on X containing x, and a chart (V, g) on Y containing
all of H(U), and the function

g ◦H ◦ f−1 : Ũ → Ṽ

is smooth at the point f(x).
We say that H is smooth everywhere, or just smooth, iff H is smooth

at x for every point x ∈ X.

A smooth function is automatically continuous (exercise). Conversely, if
you assume that H is continuous then finding charts such that H(U) ⊂ V
is easy: just pick any chart (U ′, f ′) on X, and any chart (V, g) on Y . Then
U = H−1(V ) ∩ U ′ is an open set in U (since H is continuous), and restricting
f ′ to this open subset gives a smaller chart with the required property.

If we set Y = R then it’s easy to check that this definition agrees with Defi-
nition 4.1. Recall that in that case we observed that if a function ‘looks smooth
in one co-ordinate chart’ then it ‘looks smooth in all co-ordinate charts’. This is
still true for our more general definition of a smooth function. Suppose (U1, f1)
and (U2, f2) are two co-ordinate charts on X, and let φ21 be the transition func-
tion between them. Now let (V1, g1) and (V2, g2) be two co-ordinate charts on Y ,
and let ψ21 be the transition function between them. Assume that H(U1) ⊂ V1

and H(U2) ⊂ V2. Then we have an equality of functions

g2 ◦H ◦ f−1
2 = ψ21 ◦ (g1 ◦H ◦ f−1

1 ) ◦ φ12 (4.4)

(on the open subset in Ũ2 where both sides are defined). Since all the transition
functions are diffeomorphisms, the function g2 ◦H ◦ f−1

2 will be smooth iff the
function g1 ◦H ◦ f−1

1 is smooth.

Example 4.5. Let X = T 1 (from Example 2.11) and Y = S1 and

H : T 1 → S1

[t] 7→ (cos 2πt, sin 2πt)

(note that this is well-defined). Let’s show that H is smooth.
Start with the chart on T 1 having domain U ′ = T 1 \ [0], codomain Ũ ′ =

(0, 1) ⊂ R, and co-ordinates f = q−1 : U ′
∼−→ Ũ ′. Now take a chart on S1 with

domain V = S1∩{y > 0}, codomain Ṽ = (−1, 1), and co-ordinates g : (x, y) 7→ x
(as in Example 3.21). We have

H(U ′) = S1 \ (1, 0)

which is not contained in V , but we can shrink the chart (U ′, f) to correct this:
just set Ũ = (0, 1

2 ) and U = q(Ũ), and restrict f to U . Then in these charts H
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becomes:

H̃ = g ◦H ◦ f−1 : (0, 1
2 )→ (−1, 1)

t 7→ cos 2πt

This is smooth, which shows that H is smooth at all points in U . We could
check that H is smooth at the remaining points by using variations on these
charts.

The next result should not be surprising.

Lemma 4.6. Let X,Y and Z be three manifolds, and let

H : X → Y and G : Y → Z

be smooth functions. Then G ◦H is smooth.

Proof. Fix a point x ∈ X. Now pick a co-ordinate chart (U, f) on X containing
the point x, a co-ordinate chart (V, g) on Y containing the point H(x), and a
co-ordinate chart (W,h) on Z containing the point G(H(x)). Since H is smooth,
the function g ◦H ◦ f−1 is a smooth function, defined on some open neighbour-
hood of the point f(x) ∈ Rn (where n is the dimension of X). Similarly since G
is smooth, the function h ◦G ◦ g−1 is a smooth function, defined on some open
neighbourhood of the point g(H(x)) ∈ Rk (where k is the dimension of Y ). To
prove that G ◦H is smooth at x, we need to know that the function

h ◦G ◦H ◦ f−1

is smooth at the point f(x). But in a sufficiently small open neighbourhood of
f(x) we can factor this function as

h ◦G ◦H ◦ f−1 = (h ◦G ◦ g−1) ◦ (g ◦H ◦ f−1)

and both factors are smooth.

If you know what a category is, then this shows that there is a category
whose objects are manifolds and whose arrows are smooth functions.

Lemma 4.7. Let Z be a submanifold of X, and let

ι : Z ↪→ X

be the inclusion function. Then ι is smooth.

Proof. Exercise.

So if H : X → Y is smooth, and Z ⊂ X is a submanifold, then the restriction
H|Z : Z → Y is automatically smooth (just combine Lemmas 4.7 and 4.6). For
example, any smooth function h : R2 → R restricts to give a smooth function
h : S1 → R, as we checked explicitly in Example 4.2.

Here is a another result that is often useful for proving that a function is
smooth:

Lemma 4.8. Let H : X → Y be a smooth function between two manifolds, and
let Z ⊂ Y be a submanifold of Y . Suppose that the image of H is contained in
Z. Then H defines a smooth function from X to Z.
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Proof. Exercise.

Example 4.9. Let’s do Example 4.5 again using the previous result. Define a
function:

Ĥ : T 1 → R2

[t] 7→ (cos 2πt, sin 2πt)

We can check that Ĥ is smooth by looking at it in charts on T 1, then by Lemma
4.8 we know that Ĥ defines a smooth function H : T 1 → S1 (we don’t need to
use explicit charts on S1).

4.2 The rank of a smooth function

We now begin to think about an extremely important concept: the derivative
of a smooth function. It will take us a long time to really get to grips with this
idea.

Suppose we have smooth functions

F : Rn → Rk and G : Rk → Rm

and we form their composition G ◦ F : Rn → Rm. If we pick a point x ∈ Rn
then the derivative of G ◦ F at x is a linear map

D(G ◦ F )|x : Rn → Rm

and you should recall that the formula

D(G ◦ F )|x = DG|F (x) ◦DF |x

holds. This is nothing but the chain rule for functions of more than one variable.
Of course the formula still holds if F is only defined in some open neighbourhood
of x, and G is only defined in some open neighbourhood of F (x).

In particular, if n = k = m, and G = F−1, we get that

D(F−1)|F (x) = (DF |x)−1

since the derivative of the identity function Rn → Rn at any point is the identity
linear map. So if F is a diffeomorphism then the derivative of F is an isomor-
phism at all points. This is the (much easier!) converse to the Inverse Function
Theorem.

Now suppose we have two manifolds X and Y , of dimensions n and k re-
spectively, and we have a smooth function:

F : X → Y

Fix a point x ∈ X. Let’s write F in co-ordinates near the point x, so we pick a
co-ordinate chart (U1, f1) on X containing the point x, and a co-ordinate chart
(V1, g1) on Y containing the point F (x), and we consider the function:

F̃1 = g1 ◦ F ◦ f−1
1
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This is defined in some open neighbourhood of the point f1(x) ∈ Rn, and it
lands in Rk. This means we can take the derivative of this function at the point
f1(x), it is some linear map:

DF̃1|f1(x) : Rn → Rk

What happens if we change co-ordinates? If we pick new charts (U2, f2) (con-
taining x) and (V2, f2) (containing F (x)), then our function becomes:

F̃2 = g2 ◦ F ◦ f−1
2

(which is is defined on some open neighbourhood of f2(x) ∈ Rn). The derivative
of F̃2 at the point f2(x) is also a linear map:

DF̃2|f2(x) : Rn → Rk

How are the two linear maps DF̃1|f1(x) and DF̃2|f2(x) related to each other?

We’ve already observed (4.4) that the functions F̃1 and F̃2 are related by
the equation

F̃2 = ψ21 ◦ F̃1 ◦ φ12 (4.10)

where φ12 is the transition function between U2 and U1, and ψ21 is the transi-
tion function between V1 and V2 (we might have to restrict to a smaller open
neighbourhood of f2(x) before this equation makes sense).

Now take the derivative of the equation (4.10) at the point f2(x). By the
chain rule, we have:

DF̃2|f2(x) = Dψ21|g1(F (x)) ◦DF̃1|f1(x) ◦Dφ12|f2(x) (4.11)

So the linear maps DF̃1|f1(x) and DF̃2|f2(x) are not the same, but they are
related by this formula. Now we can make an important observation: the linear
maps Dψ21|g1(H(x)) and Dφ12|f2(x) are isomorphisms, because the transition

functions are diffeomorphisms. Therefore, the rank of DF̃2|f2(x) must be the

same as the rank of DF̃1|f1(x).
This means we can make the following definition:

Definition 4.12. Let X and Y be manifolds (of dimensions n and k respec-
tively) and let F : X → Y be a smooth function. Fix a point x ∈ X. Now pick
a co-ordinate chart (U, f) containing x and a co-ordinate chart (V, g) containing
F (U), and consider the function:

F̃ = g ◦ F ◦ f−1 : Ũ → Ṽ

We define the rank of F at x to be the rank of the derivative

DF̃ |f(x) : Rn → Rk

of F̃ at f(x).

This makes sense because of the formula (4.11); it doesn’t matter which
co-ordinate charts we choose, the rank of DF̃ |f(x) will always be the same.

Now we can generalize Definitions 3.13 and 3.14.
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Definition 4.13. Let F : X → Y be a smooth function between two manifolds,
of dimensions n and k respectively. We say that a point x ∈ X is a regular
point of F if the rank of F at x is equal to k. If x is not a regular point then
we call it a critical point.

We say that a point y ∈ Y is a regular value of F if every point x ∈ F−1(y)
is a regular point. If y is not a regular value then we call it a critical value.

So x is a regular point of F iff the derivative

DF̃ |f(x) : Rn → Rk

is a surjection, where F̃ is F written in any co-ordinate charts. In other words
x is a regular point of F iff f(x) is a regular point of F̃ , for any choice of co-
ordinates. Clearly if we set X to be an open set in Rn, and Y to be Rk, then
we recover our previous definitions.

We can also generalize Proposition 3.16 fairly easily:

Proposition 4.14. Let F : X → Y be a smooth function between two manifolds,
of dimensions n and k respectively. Let y ∈ Y be a regular value of F . Then
the level set

Zy = F−1(y) ⊂ X

is a submanifold of X of codimension k.

Proof. Pick a point x ∈ Zy, a co-ordinate chart (U, f) containing x, and a
co-ordinate chart (V, g) containing F (U), and consider the function:

F̃ = g ◦ F ◦ f−1 : Ũ → Ṽ

Note that the level set F̃−1(g(y)) is just f(Zy ∩U). Since y is a regular value of
F , the point x must be a regular point of F , which means that f(x) is a regular
point of F̃ . Now we can apply the Implicit Function Theorem and conclude
that there is a chart (W,h) on Rn, with f(x) ∈W ⊂ Ũ , such that:

h(F̃−1(g(y)) = Rn−k ∩ W̃

Then we can use the co-ordinate chart (f−1(W ), h◦f) on X to demonstate that
Zy satisfies the submanifold condition at the point x.

Example 4.15. Consider the 2-sphere

S2 =
{

(x, y, z); x2 + y2 + z2 = 1
}
⊂ R3

and let F : S2 → R be the function:

F : (x, y, z) 7→ x

We have a chart on S2 with domain U1 = S2 ∩ {z > 0} and co-ordinates f1 :
(x, y, z) 7→ (x, y), and in this chart F becomes:

F̃1 : B(0, 1)→ R
(x, y) 7→ x
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Then DF̃1 = (1, 0) at all points, so the rank of F is 1 at all points in U . Similarly,
it’s easy to see that the rank of F is 1 at any point where z < 0, or any point
where y 6= 0.

Now let’s switch to the chart with domain U2 = S2∩{x > 0} and co-ordinates
f2 : (x, y, z) 7→ (y, z). In this chart F becomes

F̃2 : B(0, 1)→ R

(y, z) 7→
√

1− y2 − z2

and this has derivative:

DF̃2|(y,z) =
−(y, z)√

1− y2 − z2

This has rank 1 if (y, z) 6= (0, 0) (this had to be true from our calculations in
other charts), but it has rank zero at (0, 0). So F has rank zero at the point
(1, 0, 0). A similar calculation shows that F also has rank zero at the point
(−1, 0, 0).

So the only critical points of F are (±1, 0, 0), and thus the only critical values
of F are α = 1 and α = −1. If |α| < 1 then the level set F−1(α) is a circle, the
intersection of the 2-sphere with the plane {x = α}. Proposition 4.14 says that
this is a 1-dimensional submanifold of S2.

If |α| > 1 then the level set F−1(α) is empty. At the critical values α = ±1
the level set consists of a single point, this is evidently not a 1-dimensional
submanifold.

4.3 Some special kinds of smooth functions

We can use our definition of rank to single out some particularly important
kinds of smooth functions.

Definition 4.16. A smooth function F : X → Y is called a submersion if the
rank of F at any point is equal to the dimension of Y .

So F is a submersion iff the derivative at any point (in any co-ordinates) is
a surjection, i.e. a submersion is exactly a smooth function that has no critical
points. There is a dual notion to this:

Definition 4.17. A smooth function F : X → Y is called an immersion if
the rank of F at any point x ∈ X is equal to the dimension of X.

In other words, F is an immersion iff the derivative at any point (in any
co-ordinates) is an injection.

Recall from Lemma 4.7 that the inclusion ι : Z ↪→ X of a submanifold is a
smooth function.

Lemma 4.18. Let Z ⊂ X be a submanifold of X. Then the inclusion map
ι : Z ↪→ X is an immersion.

Proof. Exercise.

This is the typical example of an immersion, however not every immersion
is of this form.
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Example 4.19. Let X = R and Y = R2, and let:

F : R→ R2

t 7→ (t2, t3 − t)

We can take the trivial co-ordinate charts on X and Y . The derivative of F at
the point t ∈ R is the linear map

DF |t = (2t, 3t2 − 1) : R→ R2

which is an injection for every t. Hence F is an immersion. The image of F is not
a submanifold, the problem occurs at the ‘intersection point’ at (1, 0) = F (±1)
(see Figure 7).

Figure 7: The image of an immersion need not be a submanifold.

One might hope that if F is an injective immersion then the image of F
must be a submanifold, but this is not true either! For a counter-example, just
restrict the function F from Example 4.19 to the open interval (−∞, 1) ⊂ R.

The following easy observation sometimes gives a convenient way of com-
puting the rank of a smooth function.

Lemma 4.20. Let F : X → Z be any smooth function and let G : Z → Y be
an immersion. Pick any point x ∈ X. Then the rank of G ◦ F at x is the same
as the rank of F at x.

Proof. Exercise.

In particular, suppose Z is a submanifold of Y and F : X → Z is a smooth
function. Then it doesn’t matter whether we view F as a function to Z, or as
a function to Y that happens to land in Z; the rank is the same.
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Example 4.21. In Example 4.5, and again in Example 4.9, we proved that the
function

H : T 1 → S1

[t] 7→ (cos 2πt, sin 2πt) (4.22)

was smooth. Let’s compute the rank of H at all points.
In Example 4.5 we saw that there are charts (U, f) on T 1 and (V, g) on S1

in which H becomes:

H̃ = g ◦H ◦ f−1 : (0, 1
2 )→ (−1, 1)

t 7→ cos 2πt

Then DH̃|t = 2π sin 2πt. This is never zero (in this domain), so H has rank 1
at all points in U . We can use other charts to check that in fact H has rank 1
at all points in T 1.

Alternatively, we can compose H with the inclusion ι : S1 ↪→ R2 to get a
function Ĥ =: T 1 → R2 (as in Example 4.9). Then Lemma 4.20 guarantees
that the ranks of H and Ĥ are the same at all points, so let’s compute the rank
of Ĥ instead. This is slightly easier, since we don’t need to pick charts on S1.

If we pick any open set Ũ ⊂ R on which the quotient map q : R → T 1 is
an injection then we get a chart on T 1 with domain U = q(Ũ) and co-ordinates
q−1 (see problem sheets). If we write Ĥ in this chart it becomes a function

Ĥ ◦ q : Ũ → R2

defined by the same formula (4.22). This has derivative:

D(Ĥ ◦ q)|t = 2π(− sin 2πt, cos 2πt) : R2 → R

This is never the zero matrix, so it has rank 1 at any t. Hence Ĥ has rank 1 at
all points.

Our final class of smooth functions is perhaps the most important:

Definition 4.23. Let X and Y are two smooth manifolds. A function

F : X → Y

is called a diffeomorphism if F is smooth, bijective, and the inverse function
F−1 is also smooth. If there exists a diffeomorphism between X and Y then we
say that X and Y are diffeomorphic.

If two manifolds are diffeomorphic then they are exactly the same, for all
practical purposes (it may help to think of ‘diffeomorphic’ as another word for
‘isomorphic’). Note that if X and Y are just open subsets of Rn then this
reduces to our previous definition of ‘diffeomorphism’.

Suppose F : X → Y is a diffeomorphism, and we want to look at in co-
ordinates. So we pick a chart (U, f) on X, and a chart (V, g) on Y containing all
of F (U). But then F (U) is an open subset of V (since F is a homeomorphism),
so we can shrink V to this open set and get a smaller chart on on Y . In these
co-ordinates, F becomes a diffeomorphism:

F̃ = g ◦ F ◦ f−1 : Ũ
∼−→ Ṽ
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This implies that the derivative of F̃ at any point must be an isomorphism, so F
is both a submersion and an immersion. In particular, diffeomorphic manifolds
must have the same dimension, which is reassuring.

We can extend Corollary 3.10 to the following criterion for testing if a func-
tion is a diffeomorphism:

Lemma 4.24. Let X and Y be n-dimensional manifolds, and let

F : X → Y

be a smooth bijection. If the rank of F is n at every point then F is a diffeo-
morphism.

Proof. We just need to show that the inverse function F−1 is smooth. Fix a
point y ∈ Y , let x = F−1(y), and choose co-ordinate charts (U, f) containing x
and (V, g) containing F (U). Consider the function F̃ = g ◦ F ◦ f−1. Since the
rank of F is n at the point F (y), the derivative

DF̃ |f(x) : Rn → Rn

is an isomorphism. By the Inverse Function Theorem, there is some open neigh-
bourhood of g(y) on which the function F̃−1 is smooth. This proves that F−1

is smooth at y.

Example 4.25. Recall from Example 4.21 that we have a smooth function

H : T 1 → S1

[t] 7→ (cos 2πt, sin 2πt)

whose rank is 1 at all points. This H is obviously a bijection, it must be a diffeo-
morphism. Hence these two versions of the circle, T 1 and S1, are diffeomorphic
manifolds.

We leave our third version of the circle, RP1, as an exercise.

Example 4.26. Recall from Example 2.25 that we can find a ‘non-standard’
atlas C on the topological manifold R which is not compatible with the stan-
dard atlas A. However, the two smooth manifolds (R, [A]) and (R, [C]) are
diffeomorphic (exercise).

This leaves an interesting question: does there exist any smooth atlas D on
Rn such that the resulting smooth manifold (Rn, [D]) is not diffeomorphic to
the standard Rn? This question was comprehensively answered in the 1980s,
and the answer is one of the most astonishing results in all of mathematics.
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5 Tangent spaces

If we have open sets U ⊂ Rn and V ⊂ Rm and a smooth function F : U → V ,
we know that we can define the derivative of F at any point x ∈ U , and this is
a linear map:

DF |x : Rn → Rm

If we replace U and V by arbitrary manifolds X and Y , then we don’t yet know
how to generalize this definition. We saw in the last section that it’s possible to
define the rank of the derivative of F at a point in X, but this is just a number.
The aim of this section is to upgrade this number to a linear map.

We will show that to any point x in a manifold X there’s an associated
vector space, called the tangent space to X at x, and denoted TxX. Then we’ll
show that if we have smooth map F : X → Y then we can define the derivative
of F at x, and it’s a linear map:

DF |x : TxX → TF (x)Y

In fact defining tangent spaces is the hard part, the fact that we can define
DF |x will follow almost automatically.

5.1 Tangent vectors via curves

Roughly, a tangent vector to a point x in a manifold is a direction that you can
go in from x. There are several ways to make this precise, the most intuitively
appealing way is via equivalence classes of curves. We start by explaining how
this works for the simplest kind of manifolds, namely open sets in Rn.

Fix an open set Ũ ⊂ Rn, and pick a point x̃ ∈ Ũ . Let’s declare that a curve
through x̃ is a smooth function

σ = (σ1, ..., σn) : (−ε, ε)→ Ũ

with σ(0) = x̃, where here ε is some positive real number and (−ε, ε) ⊂ R is the
corresponding open interval. This is indeed a smooth parametrized curve in Ũ ,
passing through the point x̃. Note that we really mean the function σ and not
just its image in Ũ (which would be an unparametrized curve).

The derivative of σ at the point 0 ∈ R is a linear map:

Dσ|0 : R→ Rn

given by the n-by-1-matrix:

Dσ|0 = (σ̇1(0), ..., σ̇n(0))>

We’re going to think ofDσ|0 as a column vector in Rn rather than as a matrix (or
if you prefer, we’re going to write Dσ|0 when we mean Dσ|0(1)). Of course, this
is just the tangent vector to σ when it hits the point x̃. It’s the ‘direction’ that
σ is travelling when it passes through x̃, or more accurately it’s the ‘velocity’ of
σ, since we don’t forget the length of Dσ|0.

Now suppose that we have two curves through x̃:

σ : (−ε1, ε1)→ Ũ

τ : (−ε2, ε2)→ Ũ

43



Let’s declare that σ and τ are tangent at x̃ iff they have the same tangent vector
at this point, so Dσ|0 = Dτ |0. This is restrictive use of the word ‘tangent’,
since we’re requiring that the the tangent vectors are actually equal and not
just proportional. For example if τ was a reparametrization of σ, then under
our definition it probably wouldn’t be tangent to σ at x̃.

Obviously being tangent at x̃ is an equivalence relation on curves through
x̃, and by definition we have a well-defined function

∆ : {curves through x̃} /(tangency at x̃) −→ Rn

sending each equivalence class [σ] to its tangent vector Dσ|0. By definition this
function ∆ is an injection. It’s also a surjection, this is because for any vector
v ∈ Rn we can consider a straight line

σv : R→ Rn

t 7→ x̃+ vt (5.1)

and if ε is small enough this defines a function:

σv : (−ε, ε)→ Ũ

This is a curve through x̃, and obviously ∆(σv) = v. So ∆ is a bijection of sets.

Now we want to generalize this to other manifolds. LetX be an n-dimensional
manifold, and pick a point x ∈ X.

Definition 5.2. A curve through x is a smooth function

σ : (−ε, ε)→ X

with σ(0) = x, where ε is any positive real number.

We want to find a definition of when two curves through x are tangent to
each other. As usual, we need to look at our curves in co-ordinates.

Suppose we have a curve σ through a point x ∈ X, and we pick a chart
(U, f) around the point x. Then in these co-ordinates σ becomes a curve

σ̃ = f ◦ σ

in Ũ , through the point f(x) (we might have to shrink ε to ensure that the
image of σ lies within U). This curve has an associated tangent vector:

Dσ̃|0 ∈ Rn

However, this vector in Rn is not independent of our co-ordinates, it will change
when we change charts. If (U1, f1) and (U2, f2) are two charts around x, and
we write σ in both sets of co-ordinates (possibly after shrinking ε to make sure
that σ lands in U1 ∩ U2), the answers are related by the equation

σ̃2 = φ21 ◦ σ̃1

where φ21 is the transition function between the two charts. If we use our first
chart, the tangent vector to σ would be the vector Dσ̃1|0 ∈ Rn, and if we use
our second chart, it would be Dσ̃2|0. By the chain rule, we have that

Dσ̃2|0 = Dφ21|f1(x)

(
Dσ̃1|0

)
(5.3)
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so these two vectors are related by the invertible linear map:

Dφ21|f1(x) : Rn −→ Rn

So given a single curve σ, it makes no sense to ask what the tangent vector to
σ is (as a vector in Rn at least) because the answer depends on your choice of
chart. However, if you have two curves σ and τ , through the same point x ∈ X,
it does make sense to ask if they have the same tangent vector.

Let’s check this. Choose a chart (U1, f1) around x, and write both curves in
this chart, so we get curves σ̃1 and τ̃1 through the point f1(x) ∈ Ũ1. Now pick
a second chart (U2, f2) and again write both curves in co-ordinates, so we get
curves σ̃2 and τ̃2 through the point f2(x) ∈ Ũ2. Then (5.3) implies that

Dσ̃1|0 = Dτ̃1|0 ⇐⇒ Dσ̃2|0 = Dτ̃2|0

i.e. the curves σ̃1 and τ̃1 are tangent at f1(x) if and only if the curves σ̃2 and
τ̃2 are tangent at f2(x). So we may make the following definition:

Definition 5.4. Fix a point x in a manifold X. We say that two curves σ, τ
through x are tangent at x iff for any co-ordinate chart (U, f) containing x,
we have:

D(f ◦ σ)|0 = D(f ◦ τ)|0
As we have shown, if this holds in one chart then it holds in all charts.

Obviously ‘being tangent at x’ is an equivalence relation on the set of all curves
through x.

Definition 5.5 (‘Geometer’s definition’ ). Fix a point x in a manifold X. A
tangent vector to x is an equivalence class of curves through x. We denote
the set of all tangent vectors to x by

TxX = {curves through x} /(tangency at x)

and call it the tangent space to X at x.

If we fix a chart (U, f) around x then we can identify the tangent space TxX
with Rn, because given a curve through x we can write in co-ordinates and then
look at its tangent vector at f(x). This defines a function:

∆f : TxX −→ Rn (5.6)

[σ] 7→ D(f ◦ σ)|0

By the definition of TxX, this function ∆f is well-defined, and an injection. It’s
also a surjection, because given any v ∈ Rn we have a ‘straight-line’ curve

σ̃v : (−ε, ε)→ Ũ

t 7→ f(x) + vt

(for small-enough ε) as in (5.1), and then σv = f−1 ◦ σ̃v is a curve through x
such that ∆f (σv) = v. Hence ∆f is a bijection of sets.

However, this identification of TxX with Rn does depend on our choice of
chart. If (U1, f1) and (U2, f2) are two charts containing x, then we get two
different bjiections:

∆f1 : TxX
∼−→ Rn and ∆f2 : TxX

∼−→ Rn
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By (5.3), these two bijections are related by the equation

∆f2 = Dφ21|f1(x) ◦∆f1 (5.7)

where φ21 is the transition function between our two charts.
If we had some canonical bijection between TxX to Rn (i.e. without making

any choices) then obviously TxX would have the structure of an n-dimensional
vector space. But we don’t have a canonical bijection, instead we have one
bijection ∆f for each choice of chart around x, and there is no way to single out
any special one. Nevertheless, this is enough to define a vector space structure
on TxX.

Proposition 5.8. If x is a point in an n-dimensional manifold X, then the
tangent space TxX is an n-dimensional vector space.

Proof. Pick a co-ordinate chart (U, f) containing x, so we get a bijection ∆f

between TxX and Rn as in (5.6). We can use this bijection to put a vector space
structure on TxX, i.e. we can define an addition operation

[σ] + [τ ] = ∆−1
f

(
∆f (σ) + ∆f (τ)

)
and a scalar multiplication

λ[σ] = ∆−1
f

(
λ∆f (σ)

)
and these are guaranteed to satisfy the vector space axioms. We claim that this
vector space structure on TxX is independent of our choice of chart.

To see this, pick two charts (U1, f1) and (U2, f2) around x, and let φ21 be the
transition function. We get two bijections ∆f1 and ∆f2 , related by the derivative
of the transition function (5.7). Since Dφ21|x is a linear isomorphism, it follows
formally that the values of [σ] + [τ ] and λ[σ] are independent of whether we use
∆f1 or ∆f2 .

So we have achieved our first aim for this section, namely to any point x in
a manifold X we have attached a vector space TxX. If we choose a chart (U, f)
around x then we get a bijection

∆f : TxX
∼−→ Rn

and this is a linear isomorphism (by definition). But if we have two different
charts then we get two different isomorphisms of TxX with Rn, related by the
equation (5.7).

Now we move on to our second aim: defining the derivative of a smooth
function between two manifolds.

Firstly, suppose that Ũ and Ṽ are open sets in Rn and Rm respectively, and
that F is a smooth function:

F : Ũ → Ṽ

Pick a point x̃ ∈ Ũ and let ỹ = F (x̃). If we have a curve σ through x̃, then the
composition F ◦ σ is a curve through ỹ (since the composition of two smooth
functions is smooth). Furthermore, using the chain rule again tells us that:

D(F ◦ σ)|0 = DF |x̃
(
Dσ|0

)
(5.9)
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In particular, the tangent vector to the curve F ◦σ only depends on the tangent
vector to σ. So we have a well-defined function:

{curves through x̃}
(tangency at x̃)

−→ {curves through ỹ}
(tangency at ỹ)

[σ] 7→ [F ◦ σ]

We can identify the domain of this function with Rn, and its codomain with
Rm, by sending curves to their tangent vectors. Then this function is just the
derivative DF |x̃.

Now we can generalize this to any smooth function between manifolds.

Proposition 5.10. Let X and Y be manifolds of dimensions n and m, and let
F : X → Y be a smooth function. Fix a point x ∈ X, and let y = F (x). Then
we have a well-defined function

DF |x : TxX −→ TyY

[σ] 7→ [F ◦ σ]

and DF |x is linear.

We call this linear map the derivative of F at x.

Proof. Pick a chart (U, f) on X containing x, and a chart (V, g) on Y containing
y. In these charts, F becomes the function:

F̃ = g ◦ F ◦ f−1 : Ũ −→ Ṽ

Now choose a curve σ through x. Using our chart, this becomes a curve σ̃ = f ◦σ
through the point x̃ = f(x) ∈ Ũ , and its associated tangent vector is:

∆f (σ) = Dσ̃|0 ∈ Rn

Now form the composition F ◦σ, this is a curve through the point y ∈ Y . Using
our chart on Y , it becomes a curve

g ◦ (F ◦ σ) = F̃ ◦ σ̃

through the point ỹ = g(y) ∈ Ṽ . The tangent vector associated to this curve is

∆g(F ◦ σ) = D(F̃ ◦ σ̃)|0 ∈ Rm

which by the chain rule (5.9) is equal to:

DF̃ |x̃
(
Dσ̃|0

)
= DF̃ |x̃

(
∆f (σ)

)
So the tangent vector ∆g(F ◦ σ) only depends on the tangent vector ∆f (σ).
This means that the equivalence class of the curve F ◦ σ in the space TyY only
depends on the equivalence class of the curve σ in the space TxX, and thus
we have a well-defined function DF |x : TxX → TyY that sends [σ] → [F ◦ σ].
Furthermore the square

TxX TyY

Rn Rm

DF |x

∆f ∆g

DF̃ |x̃

(5.11)
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commutes, i.e.
DF |x = ∆−1

g ◦DF̃ |x̃ ◦∆f

and therefore DF |x is a linear map, since it’s the composition of three linear
maps.

So now we have a way to talk about the derivative of a smooth map ab-
stractly, without reference to any co-ordinate charts. If we do decide to pick
co-ordinates, it reduces the ordinary notion of the derivative of a smooth map,
via the square (5.11).

In particular, it’s immediate that the rank of F at x (Definition 4.12) is
exactly the rank of the linear map DF |x. So we could restate our definitions
of submersions, immersions, critical points, etc. just in terms of this abstract
linear map, without ever picking charts.

5.2 Tangent spaces to submanifolds

If we have a submanifold Z of Rn, and we choose a point z ∈ Z, then we have
an intuitive idea of what it means for a vector v ∈ Rn to be ‘tangent’ to Z at
the point z. This means that for submanifolds of Rn there should be a much
more elementary definition of the tangent space TzZ, it should be the subspace
of Rn consisting of vectors that are tangent to Z at z. Let’s show that our fancy
definition agrees with this more elementary definition, in this special case.

The manifold Rn is very special in that for any point z ∈ Rn, the tangent
space TzRn can be canonically identified with Rn, via the map [σ] 7→ Dσ|0.
Another way to say this is to observe that on any manifold X we can identify
any tangent space TxX with Rn once we’ve chosen a chart around x, but if
X = Rn then there is a canonical choice of co-ordinates, namely the identity
function. So for a point in Rn there is no harm in thinking of the tangent space
as being literally the vector space Rn.

Now let Z ⊂ Rn be a submanifold, and pick a point z ∈ Z. If we have a
curve σ in Z through the point z, then we can think of σ as curve in Rn (through
z). More formally, if ι : Z ↪→ Rn is the inclusion map, we can replace σ by ι ◦σ.
We saw above that this induces a well-defined map on tangency classes, this is
how we defined the derivative:

Dι|z : TzZ → TzRn

[σ] 7→ [ι ◦ σ]

If we identify TzRn with Rn, then this map is simply sending the class of σ to
the vector Dσ|0 ∈ Rn. We checked in Lemma 4.18 that ι is an immersion, so
the linear map Dι|z is an injection. This means that we can view TzZ as a
subspace of Rn; it is the subspace of vectors which are tangent to curves in Z.
This is exactly our intuitive idea of a tangent space.

Example 5.12. Consider the submanifold Z1 = {(x, sinx)} ⊂ R2 from Exam-
ple 3.1. For any point y = (x, sinx) ∈ Z1, we can define a curve in R2 through
the point y by

σ : (−ε, ε)→ R2

t 7→ (t+ x, sin(t+ x))
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Figure 8: The tangent space to a point in Z1.

(and ε can be any positive real number). The image of σ lies in Z1, so σ is
automatically a smooth function from (−ε, ε) to Z1 by Lemma 4.8. Hence [σ] is
a vector in TyZ1. If we want to view [σ] as a vector in TyR2 ∼= R2 we compute:

Dσ|0 =

(
1

cosx

)
∈ R2

Since Z1 is only 1-dimensional, the tangent space TyZ1 is the line in R2 spanned
by this vector (see Figure 8).

This is exactly what the tangent line ought to be, so our complicated defi-
nitions have reduced to a sensible answer.

We can generalize this picture from Rn to arbitrary manifolds. Suppose X
is a manifold, and Z ⊂ X is a submanifold. The inclusion map

ι : Z ↪→ X

is a smooth immersion (Lemma 4.18 again), so for any z ∈ Z we have a linear
injection:

Dι|z : TzZ ↪→ TzX

So we can always view TzZ as a subspace of TzX. We can see this very explicitly
in co-ordinates: we know we can choose a chart (U, f) containing z such that

f(U ∩ Z) = Ũ ∩ Rm

for the standard subspace Rm ⊂ Rn. This fixes an isomorphism ∆f : TzX
∼−→

Rn, under which TzZ becomes the subspace Rm ⊂ Rn.
We saw in Proposition 4.14 that a good way to produce submanifolds is as

the level sets of smooth functions.

Lemma 5.13. Let F : X → Y be a smooth function, let y ∈ Y be a regular
value of F , and let Z =

{
F−1(y)

}
be the corresponding submanifold of X. For

any z ∈ Z, the tangent space TzZ is the kernel of the linear map:

DF |z : TzX → TyY

Proof. Let the dimensions of X and Y be n and k. The Implicit Function
Theorem implies (see problem sheets) that we can find a chart (U, f) on X
containing z, and a chart (V, g) on Y containing y, such that the function

F̃ = g ◦ F ◦ f−1 : Ũ → Ṽ
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is simply the restriction of the standard linear projection:

π : Rn → Rk

We can also assume (after translating) that g(y) = 0, and then f(Z ∩ U) is
the intersection of Ũ with the subspace Rn−k ⊂ Rn. This is essentially how we
proved Proposition 4.14.

Now since π is linear, if we look at DF |z in these charts we get

DF̃ |f(z) = π : Rn → Rk

and the kernel of this is the subspace Rn−k ⊂ Rn, which is exactly the tangent
space TzZ ⊂ TzX written in this chart.

Example 5.14. Consider the submanifold Sn ⊂ Rn+1. This is the level set of
the function

h : (x0, ..., xn) 7→ x2
0 + ...x2

n

at the regular value h = 1, as we saw in Example 3.19. At a point x =
(x0, ..., xn) ∈ Sn, the derivative of h is the 1-by-n matrix:

(2x0, ..., 2xn) : Rn → R

So the tangent space TxS
n is the subspace:

TxS
n = {v ; x.v = 0} ⊂ Rn+1

Example 5.15. If we specialize the previous Example to S1 ⊂ R2, we see that
the tangent space to a point (x, y) ∈ S1 is the subspace:〈(

−y
x

)〉
⊂ R2

Now let’s derive this again using polar co-ordinates

f−1 : Ũ = R>0 × (−π, π)
∼−→ U = R2 \ {(x, 0), x ≤ 0}

(r, θ) 7→ (r cos θ, r sin θ)

as in Example 3.3. In this chart, S1 becomes the subspace {r = 1} ⊂ Ũ , so if
we pick a point (1, θ) ∈ f(S1) then the tangent space is:

T(1,θ)f(S1) =

〈(
0
1

)〉
⊂ R2

The derivative of f−1 at this point is

D(f−1)|(1,θ) =

(
cos θ − sin θ
sin θ cos θ

)
so the tangent space to the point (cos θ, sin θ) ∈ S1 is the line spanned by the
vector (− sin θ, cos θ)> ∈ R2.

50



5.3 A second definition of tangent vectors

We’re now going to discuss a second way to define tangent vectors, and later on
we’ll introduce a third definition. These other definitions are precisely equivalent
to the definition we’ve already introduced, but each one has its own advantages
and disadvantages.

Fix a point x in a manifold X, and fix a tangent vector [σ] ∈ TxX, the equiv-
alence class of some curve σ through x. If we now choose a co-ordinate chart
(U, f) containing x, we can turn [σ] into an ordinary column vector ∆f (σ) ∈ Rn.
Furthermore, if we change co-ordinates between (U1, f1) and (U2, f2), we know
that the ‘transformation law’

∆f2(σ) = Dφ21|f1(x)

(
∆f1(σ)

)
(5.16)

holds (this was equation (5.7)). If we wish, we can take these properties to be
the definition of a tangent vector.

Definition 5.17 (‘Physicist’s definition’ ). Fix a point x in an n-dimensional
manifold X. Let Ax denote the set of all co-ordinate charts on X that contain
the point x. A tangent vector to x is a function

δ : Ax → Rn

which we write
δ : (U, f) 7→ δf

and which has the following property: for any two charts (U1, f1) and (U2, f2)
in Ax, the equation

δf2 = Dφ21|f1(x)

(
δf1
)

(5.18)

holds.

Let’s temporarily use the notation TxX to denote the set of tangent vectors
in the sense of Definition 5.17, although as we shall see in a moment the two
definitions are equivalent and TxX is the same thing as TxX.

The vector space structure on TxX is much more obvious than the one on
TxX. For two elements δ, δ̂ ∈ TxX, we can define δ + δ̂ to be the function:

δ + δ̂ : (U, f) 7→ δf + δ̂f ∈ Rn

This still obeys the rule (5.18) for any two charts, because Dφ21|f1(x) is linear.
Scalar multiplication is similar, and it’s immediate that TxX is a vector space.
Now let’s prove that it has dimension n.

Lemma 5.19. For any chart (U, f) ∈ Ax, the function ‘evaluate in (U, f)’

evf : TxX −→ Rn

δ 7→ δf

is a linear isomorphism.

Proof. The fact that evf is linear follows instantly from the definition of the
vector space structure on TxX. It’s also clear that it’s an injection, because if
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δ and δ̂ give the same vector for (U, f) then they must give the same vector for
all charts, because of the rule (5.18). So it only remains to prove surjectivity.

Pick any vector v ∈ Rn. Let (U0, f0) = (U, f), and define a function δ :
Ax → Rn by:

δ : (Ui, fi) 7→ δfi = Dφi0|f0(x)(v)

If we pick any two charts (U1, f1), (U2, f2) ∈ Ax, the transition functions obey
the equation

φ20 = φ21 ◦ φ10

(this makes sense in some neighbourhood of f0(x)), so by the chain rule:

δf2 = Dφ20|f0(x)(v) = Dφ21|f1(x)

(
Dφ10|f0(x)(v)

)
= Dφ21|f1(x)(δf1)

So our function δ obeys the rule (5.18), hence it’s an element of TxX, and by
construction evf (δ) = v.

If we have two different charts in Ax then the isomorphisms evf1 and evf2
are related by

evf2 = Dφ21|f1(x) ◦ evf1
which is the same rule as relates ∆f1 and ∆f2 .

Now we can prove that our two definitions of tangent vectors, Definition 5.5
and Definition 5.17, are equivalent.

Proposition 5.20. There is a canonical linear isomorphism between TxX and
TxX.

Proof. If we have a tangent vector [σ] ∈ TxX in the ‘geometer’s sense’, then we
can get a tangent vector δ ∈ TxX in the ‘physicist’s sense’ by considering the
function:

δ : Ax → Rn

(U, f) 7→ ∆f (σ)

So there is a natural function:

TxX → TxX

If we fix any chart (U, f) ∈ Ax, this function factors as the composition

TxX
∆f−→ Rn

ev−1
f−→ TxX

and since both factors are linear isomorphisms, so is their composition.
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6 Vector fields

6.1 Definition of a vector field

We have shown (twice over) that to any point x in a manifold X we can attach
a vector space TxX. A vector field on X is a function which assigns to any point
x ∈ X a vector in the corresponding tangent space TxX.

We’ll give the formal definition of a vector field shortly, but let’s start by
considering the case when X = U is just an open set in Rn. In this case, the
tangent space TxU to any point x ∈ U is canonically isomorphic to Rn, because
we have a canonical set of co-ordinates on U . This means that a vector field on
U is simply a function:

ξ̃ : U → Rn

This is a definition you may have seen before, but it is potentially misleading. If
x and y are two different points in U then we should really think of the vectors
ξ̃|x and ξ̃|y as living in two different vector spaces; the first one lives in TxU and
the second one lives in TyU . For example, it wouldn’t normally be sensible to
add these two vectors together. So we should visualize vector fields differently
from other such functions, you should imagine that at every point x ∈ U the
function ξ̃ ‘attaches’ a vector ξ̃|x to the point x (see Figure 9).

Figure 9: A vector field on R2.

To make this intuition more formal, we consider the set:

TU =
⋃
x∈U

TxU ∼= U × Rn

An element of TU is a pair (x, v) where x is a point in U , and v is a vector
in TxU . This set is exactly U × Rn, since each TxU can be identified with Rn.
Projecting onto the first factor gives a function:

π : TU → U

Now we can define a vector field on U to be a function

ξ : U −→ TU = U × Rn
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such that π ◦ ξ = 1U . This just says that ξ is a function of the form

ξ : x 7→ (x, ξ̃|x)

for some function ξ̃ : U → Rn. So the data of ξ and ξ̃ are exactly the same, but
this second definition fits the intuitive picture better.

Now we generalize this second definition to an arbitrary manifold. For any
manifold X, we can form a set

TX =
⋃
x∈X

TxX

by taking the disjoint union of all the tangent spaces to all the points in X. So
an element of TX is a pair (x, v) with x a point in X, and v a vector in TxX.
This set is called the tangent bundle to X.

In fact the tangent bundle TX is not just a set, it naturally has the structure
of a manifold, whose dimension is twice the dimension of X. We’re not going
to use this, but it is explained in Appendix E.

If x and y are two different points in X then TxX and TyX are different
vector spaces, and there is no canonical way to identify them. So in general,
TX is not a cross-product of X with some other set (we could do this when
X was an open set in Rn, but this is a very special case). But we still have a
projection function

π : TX → X

(x, v) 7→ x

with π−1(x) = TxX for all x ∈ X. Hence we can make the following definition:

Definition 6.1. A vector field on X is a function

ξ : X → TX

such that π ◦ ξ = 1X .

So for each point x ∈ X, the function ξ selects a vector ξ|x ∈ TxX.

Example 6.2. If X = S1, then we saw in Example 5.15 that the tangent space
T(x,y)S

1 to a point (x, y) ∈ S1 can be identified with the subspace of R2 spanned

by the vector (−y, x)>. So we can define a vector field on S1 by:

ξ : S1 → TS1

(x, y) 7→
(
(x, y), (−y, x)>

)
For a point in S1 this vector field assigns the corresponding (anti-clockwise)
unit angular vector (see Figure 10).

Of course, we are really interested in smooth vector fields, but we need to
say what this means.

If our manifold is an open set Ũ ⊂ Rn then the definition is obvious. We
saw before that the tangent bundle T Ũ can be identified with Ũ ×Rn, and this
is an open subset of R2n. So we can define a smooth vector field on Ũ to be a
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Figure 10: The vector field ξ on S1.

smooth function ξ : Ũ → T Ũ satisfying π ◦ ξ = 1Ũ . This is exactly the same
data as a smooth function

ξ̃ : Ũ → Rn

since the first component of ξ has to be the identity, so ξ is smooth iff its second
component ξ̃ is smooth.

Now we extend this definition to more general manifolds. Let X be a mani-
fold, and let (U, f) be a chart on X. Now let TU be the subset:

TU = π−1(U) =
⋃
x∈U

TxX ⊂ TX

For each point x ∈ U , our co-ordinates f give us an identification:

∆f : TxX
∼−→ Rn

Putting these together gives us a bijection:

F : TU
∼−→ T Ũ = Ũ × Rn

(x, v) 7→
(
f(x),∆f (v)

)
So locally TX looks like an open subset of R2n, which is why we can give it the
structure of a 2n-dimensional manifold (see Appendix E).

Now let ξ : X → TX be a vector field. Since ξ|x ∈ TxX for any point x ∈ X,
restricting ξ to U defines a function:

ξ|U : U → TU

Then we can look at this in our co-ordinates, i.e. we can consider the function:

F ◦ ξ|U ◦ f−1 : Ũ −→ T Ũ ∼= Ũ × Rn
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This function is a vector field on Ũ (because the bijection F respects the pro-
jection maps), so we must have

F ◦ ξ|U ◦ f−1 =
(
1Ũ , ξ̃

)
for some function ξ̃ : Ũ → Rn. Now the definition of a smooth vector field on
X should be clear.

Definition 6.3. A vector field ξ : X → TX on a manifold X is called smooth
iff for any chart (U, f) on X, the associated function

F ◦ ξ|U ◦ f−1 =
(
1Ũ , ξ̃

)
: Ũ −→ Ũ × Rn

is smooth, i.e. iff the function ξ̃ : Ũ → Rn is smooth.

This definition is only useful if it is chart-independent. Let’s check that this
is the case.

Suppose we have two charts (U1, f1) and (U2, f2) on X, and suppose for
simplicity that they have the same domain U = U1 = U2 (if not then shrink
both of them to U1 ∩ U2). For any point x ∈ U , we have two different linear
isomorphisms

∆f1 : TxX
∼−→ Rn and ∆f2 : TxX

∼−→ Rn

and they are related by the ’transformation law’

∆f2 = Dφ21|f1(x) ◦∆f1

where φ21 is the transition function. This means our two charts give bijections

F1 : TU
∼−→ Ũ1 × Rn and F2 : TU

∼−→ Ũ2 × Rn

and these are related by the bijection:

Φ21 : Ũ1 × Rn ∼−→ Ũ2 × Rn

(x̃, v) 7→
(
φ21(x̃), Dφ21|x̃(v)

)
The important thing to observe is that this function Φ21 is smooth, because

the partial derivatives of φ21 (i.e. the entries in the Jacobian matrix) are all
smooth functions of x̃. The inverse function is just Φ12, so this is also smooth,
and hence Φ21 is a diffeomorphism.

Now suppose we have a vector field ξ on X. Looking at ξ in our two charts,
we get vector fields

F1 ◦ ξ|U ◦ f−1
1 =

(
1Ũ1

, ξ̃1
)

: Ũ1 −→ Ũ1 × Rn

and:
F2 ◦ ξ|U ◦ f−1

2 =
(
1Ũ2

, ξ̃2
)

: Ũ2 −→ Ũ2 × Rn

Since F2 = Φ21 ◦ F1, and f−1
2 = f−1

1 ◦ φ12, it’s immediate that the vector field
in the first chart is smooth iff the vector field in the second chart is smooth.

In particular if we only look at the second components then we have that
ξ̃1 is smooth iff ξ̃2 is smooth. Indeed, these two functions are related by the
‘transformation law’

ξ̃2|φ21(x̃) = Dφ21|x̃
(
ξ̃1|x̃

)
(6.4)
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and Dφ21 is a matrix whose entries are smooth functions of x̃.
So if we want to check if a vector field ξ is smooth then we don’t have to check

every chart (which is impossible!), we just pick an atlas for X, and compute the
functions ξ̃ for every chart in the atlas.

Example 6.5. Let’s check that the vector field ξ on S1 from Example 6.2 is
smooth. If we use polar co-ordinates on R2 then we get an induced chart on the
submanifold S1 ⊂ R2 with U = S1 \ (−1, 0) and Ũ = (−π, π) ⊂ R, and:

f−1 : θ 7→ (cos θ, sin θ)

We computed in Example 5.15 that this chart identifies the tangent space
T(cos θ, sin θ)S

1 with TθŨ ∼= R via the linear isomorphism:

∆−1
f : R ∼−→ T(cos θ, sin θ)S

1

1 7→ (− sin θ, cos θ)>

So in this chart, the vector field ξ is just a constant function:

ξ̃ ≡ 1 : Ũ → R

This is certainly smooth, which proves that ξ is smooth at every point in S1

apart from (−1, 0), and we can use another polar co-ordinate chart to check
that ξ is smooth at that point too.

As usual we only care about smooth things, so from now on we’re going to
assume that all our vector fields are smooth, unless we need to specifically state
otherwise.

6.2 Vector fields from their transformation law

Now we’ll look at another definition of vector fields, by adopting the viewpoint
of our ‘physicist’s definition’ of a tangent vector.

If ξ is a vector field on X, then for any chart (U, f) we have a smooth function
ξ̃ : Ũ → Rn. If we have two charts (U1, f1) and (U2, f2), then the two functions

ξ̃1 : Ũ1 → Rn and ξ̃2 : Ũ2 → Rn

are related by the transformation law

ξ̃2|φ21(x̃) = Dφ21|x̃
(
ξ̃1|x̃)

)
(see (6.4)). In the style of Definition 5.17, we can take these properties to be
the definition of a vector field.

Proposition 6.6. Let ξ be a rule which assigns to any chart (U, f) on X a
smooth function:

ξ̃ : Ũ → Rn

Assume that ξ obeys the following property: for any two charts (U1, f1) and
(U2, f2), and any point x̃ ∈ f1(U1 ∩ U2), the corresponding functions ξ̃1 and ξ̃2
satisfy

ξ̃2|φ21(x̃) = Dφ21|x̃
(
ξ̃1|x̃

)
where φ21 is the transition function between the two charts. Then ξ defines a
(smooth) vector field on X.
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Proof. Fix a point x ∈ X and let Ax denote the set of charts containing x.
Define a function

ξ|x : Ax → Rn

by:
ξ|x : (U, f) 7→ ξ̃|f1(x) ∈ Rn

Then ξ|x is a tangent vector in the sense of Definition 5.17, so it defines an
element of TxX by Proposition 5.20. Hence we have a vector field:

ξ : X → TX

x 7→ ξ|x

In any single chart (U, f) this vector field becomes the corresponding function
ξ̃ : Ũ → Rn, so ξ is smooth.

We can specify a vector field by choosing an atlas for X and then specifying
the functions ξ̃ for every chart in the atlas. The values of the vector field in any
other chart will then be determined by the transformation law.

Example 6.7. Let X = S1, and recall our stereographic projection atlas from
Example 2.4. So we have two charts whose codomains are

Ũ1 = R and Ũ2 = R

and the transition function is:

φ21 : R \ 0
∼−→ R \ 0

x̃ 7→ 1

x̃

You can think of this data as alternative definition of the manifold S1; it says
we take two copies of R and ‘glue them together’ using φ21.

By Proposition 6.6, a vector field on S1 is equivalent to the data of two
smooth functions

ξ̃1 : R→ R and ξ̃2 : R→ R

such that
ξ̃2( 1

x̃ ) = − 1
x̃2 ξ̃1(x̃)

for all x̃ 6= 0. It’s very easy to construct vector fields on S1 using this definition,
just take any smooth function ξ̃1 : R→ R and define:

ξ̃2 : R \ 0→ R

x̃ 7→ −x̃2ξ̃1( 1
x̃ )

Provided that ξ̃1 behaves sufficiently well as |x̃| → ∞, we will be able to extend
ξ̃2 to a smooth function on R. For example, the pairs

ξ̃1 : x̃ 7→ 1 ξ̃1 : x̃ 7→ x̃ ξ̃1 : x̃ 7→ x̃2

ξ̃2 : x̃ 7→ −x̃2 ξ̃2 : x̃ 7→ −x̃ ξ̃2 : x̃ 7→ −1

all define vector fields on S1.
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6.3 Flows

Vector fields are closely related to a nice geometric idea called a flow, as we’ll
now explain.

If X and Y are two manifolds then we’ve defined a diffeomorphism between
X and Y to be a smooth function F : X → Y with a smooth inverse (Definition
4.23). In particular, it makes sense to talk about diffeomorphisms

F : X → X

from a manifold to itself. These are the symmetries of a manifold.

Example 6.8. Let X = T 1. For any constant s ∈ R, we can define a bijection

Fs : T 1 ∼−→ T 1

by:
Fs : [t] 7→ [t+ s]

It’s easy to check that Fs is smooth for any s, and since the inverse of Fs is F−s
this shows that each Fs is a diffeomorphism.

We checked in Example 4.25 that the function

H : T 1 → S1

[t] 7→ (cos 2πt, sin 2πt)

is a diffeomorphism. This implies that for any s the function ‘rotate by 2πs’

Gs = H ◦ Fs ◦H−1 : S1 → S1

(cos θ, sin θ) 7→
(

cos(θ + 2πs), sin(θ + 2πs)
)

is a diffeomorphism of S1.

In the previous example, we didn’t just write down one diffeomorphism, we
wrote down a whole family of them, indexed by the parameter s ∈ R, and in the
middle we have the identity function F0 = 1T 1 . Moreover, the diffeomorphism
Fs ‘depends smoothly on s’, in the following sense. Put all of them together to
form the function:

F : R× T 1 → T 1

(s, [t]) 7→ Fs([t])

The set R×T 1 is fairly obviously a 2-dimensional manifold (an atlas is given in
Example E.2), and it’s easy to check that this total function F is smooth.

Let’s abstract this example.

Definition 6.9. Let X be a manifold. A 1-parameter family of diffeomor-
phisms, or flow, on X is a smooth map

F : (−ε, ε)×X → X

for some positive real number ε, such that for each s ∈ (−ε, ε) the function

Fs : X → X

x 7→ F (s, x)

is a diffeomorphism, and in particular the map F0 is the identity on X.
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It should be clear that that if take a smooth atlas for X then we can produce
a smooth atlas for (−ε, ε)×X, by simply crossing every chart with the interval
(−ε, ε). So (−ε, ε)×X is naturally a manifold (with dimension 1 + dimX), and
hence it does makes sense to ask for F to be smooth.

Instead of fixing the parameter s, we can instead choose to fix a point x ∈ X.
Then restricting F to the subset (−ε, ε)× {x} gives us a smooth function:

Fx : (−ε, ε)→ X

s 7→ F (s, x)

Since Fx(0) = F0(x) = x, this is a curve through x, so it determines a vector
in the tangent space TxX. If we do this at all points in x simultaneously then
we produce a vector field on X, which we’ll call ξF . This vector field is the
‘infinitesimal version of the flow F ’, it tells us the direction that every point will
move in if we start to apply the flow.

Let’s look at this procedure in co-ordinates. If we pick a chart on X with
codomain Ũ ⊂ Rn then F will become a smooth function

F̃ = (F̃1, ..., F̃n) : (−ε, ε)× Ũ → Ũ

such that F0 = 1Ũ (in fact F̃ isn’t really defined on this domain because the
flow might not preserve the subset U ⊂ X, but it does make sense on some open
neighbourhood of the subset {0} × Ũ and that is all we need). The associated

vector ξ̃F field on Ũ is:

ξ̃F =
∂F̃

∂s

∣∣∣∣∣
s=0

=

(
∂F̃1

∂s

∣∣∣∣∣
s=0

, ... ,
∂F̃n
∂s

∣∣∣∣∣
s=0

)
: Ũ → Rn

In particular, it’s clear that the vector field ξF is smooth, since ξ̃F is a smooth
function.

Example 6.10. In Example 6.8 we defined the following flow on S1:

G : (−ε, ε)× S1 → S1(
s, (cos θ, sin θ)

)
7→
(

cos(θ + 2πs), sin(θ + 2πs)
)

(here ε can be any positive real number). We claim that the vector field associ-
ated to this flow takes the value

ξG|(cos θ, sin θ) =

(
−2π sin θ
2π cos θ

)
∈ T(cos θ,sin θ)S

1 ⊂ R2

at the point (cos θ, sin θ) ∈ S1. Up to the overall scale factor of 2π, this is the
vector field that we saw in Example 6.2.

There are many ways to prove this claim, for example we can look at G in
polar co-ordinates, where it becomes

G̃ : (−ε, ε)× (−π, π) −→ (−π, π)

(s, θ) 7→ θ + 2πs
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(which is really only defined in an open neighbourhood of {s = 0}). Then the
associated vector field is constant:

ξ̃G : (−π, π)→ R
θ 7→ 2π

We saw in Example 6.5 that this the expression in polar co-ordinates of the
angular vector field on S1 (up the factor of 2π).

It’s in interesting question to ask whether this process can be reversed: if
we have a vector field ξ on X, can we construct a flow on X whose associated
vector field is ξ?

This is a question about constructing solutions to partial differential equa-
tions, and dealing with it properly requires more analysis than we wish to in-
troduce here. However, the answer is yes, provided that we assume that X is
compact. If we fix a small neighbourhood U ⊂ X then we can always construct
a flow

F : (−ε, ε)× U → X

whose infinitesimal version is ξ|U , for some value of ε. If X is non-compact
then these values for ε might not be bounded above zero over the whole of X,
meaning that we cannot find a global flow F for any positive value of ε. However
if X is compact then there must some minimal ε0 > 0, and we have a global
flow with ε = ε0.
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7 Cotangent spaces

We’ve seen that to any point x in a n-dimensional manifold X we can attach
an n-dimensional vector space, the tangent space TxX. In fact we’ve seen
two equivalent ways to do this, the ‘geometer’s definition’ and the ‘physicist’s
definition’. In this section we’re going to see another way to attach an n-
dimensional vector space to x, called the cotangent space.

As we shall see, the cotangent space is not the same as the tangent space, it
is its dual. This will give us yet another way to define TxX.

7.1 Covectors

Let X be a manifold of dimension n. We let C∞(X) denote the set of all smooth
functions from X to R, this forms an infinite-dimensional vector space under
‘point-wise’ addition and scalar multiplication of functions.

Now fix a point x in X. The rank of a function h ∈ C∞(X) at the point x
can either be one or zero, and we’ll write

Rx(X) ⊂ C∞(X)

for the set of functions which have rank zero at x. We shall see in a moment
that Rx(X) is a subspace of C∞(X).

Definition 7.1. The cotangent space to X at x is the quotient space:

T ?xX = C∞(X) /Rx(X)

We refer to the elements of T ?xX as covectors.

This may look intimidating, we’ve taken an enormous vector space and quo-
tiented by an enormous subspace. Let’s start as usual by considering the case
when X is an open subset in Rn; we shall see that this quotient space is actually
very mundane.

Lemma 7.2. Let X ⊂ Rn be an open set, and let x be a point in X. Then
Rx(X) ⊂ C∞(X) is a subspace, and the quotient space T ?xX has dimension n.

Proof. Consider the map:

C∞(X) −→ Rn

h 7→ Dh|x =

(
∂h

∂x1
, ... ,

∂h

∂xn

)∣∣∣∣
x

This map is linear, and by definition Rx(X) is its kernel. Hence Rx(X) is a
subspace of C∞(X), and by the first isomorphism theorem T ?xX is isomorphic
to the image of this map. So we need only show that the map is surjective. But
for any vector (a1, ..., an) ∈ Rn we can let h be the linear function

h = a1x1 + ...+ anxn ∈ C∞(X)

and then the partial derivatives of h at x are the ai’s.
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Now let’s move to a general manifold X. Suppose we have a function h ∈
C∞(X) and we want to compute its rank at a point x ∈ X. What we must do
is pick a chart (U, f) around x, and consider the function:

h̃ = h ◦ f−1 : Ũ → R

Then h has rank zero at x iff all partial derivatives of h̃ vanish at the point
f(x) ∈ Ũ , and we know that if this is true in one chart then it must be true in
all charts. So, once we’ve fixed our chart (U, f), we can define a linear map

∇f : C∞(X) −→ Rn

h 7→ Dh̃|f(x) =

(
∂h̃

∂x1
, ... ,

∂h̃

∂xn

)∣∣∣∣∣
f(x)

and the kernel of this map is Rx(X). This proves that Rx(X) is a subspace of
C∞(X), and that the quotient space T ?x (X) is isomorphic to some subspace of
Rn - hence its dimension is at most n. The only tricky part is proving that this
map ∇f is surjective, this reason that this is not obvious is that we don’t know
a general procedure for producing any smooth functions in C∞(X). To rectify
this, we’re going to introduce some very useful gadgets called bump functions.

You may recall the remarkable function:

φ : R→ R

x 7→
{

e−
1
x , for x > 0

0, for x ≤ 0

This function is differentiable to arbitrary order, because all derivatives of e−
1
x

tend to zero as x tends to zero. It’s a good example for showing that Taylor
expansions are not necessarily to be trusted, because the Taylor expansion of
φ at zero is identically zero, but φ is not equal to the zero function in any
neighbourhood of zero.

By messing around with φ we can create some other nice functions, for
example:

ψ(x) =
φ(x)

φ(x) + φ(1− x)

This function ψ is smooth, identically equal to zero for x ≤ 0, and identically
equal to 1 for x ≥ 1 (see Figure 11).With some further modifications, it should
be clear that we can create a smooth function of n variables

ψ̃ : Rn → R

which is constantly equal to 1 inside the ball B(0, r) and constantly equal to 0
outside the ball B(0, r′), for any r′ > r > 0. This is called a bump function.

We can also create bump functions on arbitrary manifolds. Let X be a
manifold, and let x be a point in X. Pick a chart (U, f) containing x, and for

simplicity assume that f(x) = 0 ∈ Rn. Let ψ̃ be a bump function on Rn as
above, chosen such that the closure of the larger ball B(0, r′) is contained in Ũ .
Then we can define a function on the whole of X by

ψ(y) =

{
(ψ̃ ◦ f)(y), for y ∈ U

0, for y /∈ U
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Figure 11: The function ψ.

So ψ is real-valued function which has constant value 1 in an open neighbour-
hood W = f−1(B(0, r)) of x, and constant value 0 outside a larger open neigh-
bourhood W ′ = f−1(B(0, r′)). Moreover since ψ is smooth inside U and con-
stant outside U it is obviously smooth.1

Bump functions are useful for many things, one of which is extending smooth
functions from open sets to the whole of X. If we have a function g ∈ C∞(U),
then we can define a function ĝ ∈ C∞(X) by:

ĝ =

{
gψ inside U
0 outside U

Then ĝ|U and g agree on the open set W . Using this construction we can prove:

Proposition 7.3. Let x be a point in an n-dimensional manifold X. Then the
cotangent space T ?xX has dimension n.

Proof. As we saw above, if we fix a chart (U, f) containing x then we get a linear
injection ∇f : T ?xX → Rn. This sends a function h ∈ C∞(X) to the Jacobian
matrix of h, computed in the chart (U, f). Fix a vector a = (a1, ..., an) ∈ Rn.
On the codomain Ũ of our chart we can find a smooth function h̃ ∈ C∞(Ũ)
such that Dh̃|f(x) = a - for example we can set h̃ to be a linear function as we
did in the proof of Lemma 7.2.

Now construct a bump function ψ on X which is identically equal to 1 on
some open neighbourhood of x, and is identically zero outside U . Define a
function h ∈ C∞(X) by declaring h to be equal to ψ(h̃ ◦ f) inside U , and zero
outside of U . If we write h in the chart (U, f) we get a function which agrees
with h̃ in some neighbourhood of f(x), so ∇f (h) = a. This proves that ∇f is
an isomorphism.

1Actually it is not obvious that this function is smooth. It is only true because our
manifolds are Hausdorff, without this condition ψ might not even be continuous (see Appendix
C). This is the only point in this course where we will need to invoke the Hausdorff condition.
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As an aside, this trick with bump functions shows that there are lots of
smooth functions from X to R, so the space C∞(X) is very large indeed. You
can also use this trick to prove that, for example, there are lots of smooth vector
fields on X. Just pick a chart and write down any vector field on the codomain
Ũ of that chart - this is just a smooth function from Ũ to Rn. Then use a bump
function to extend this to smooth vector field on X.

Given a function h ∈ C∞(X), we’ll use the notation

dh|x ∈ T ?xX

for the associated covector at x, i.e. the equivalence class of h in the cotangent
space. If X is just an open set in Rn then we can canonically identify T ?xX
with Rn, and dh|x with the vector of partial derivatives of h at x. However on a
more general manifold there is no canonical way to do this, it’s only once we’ve
picked a chart that we get an isomorphism ∇f : T ?xX

∼−→ Rn.
This is exactly like the situation for the tangent space TxX, but there is one

important difference: the ‘tranformation law’ for covectors is different. Suppose
we have two charts (U1, f1) and (U2, f2) both containing x, and we choose a
smooth function h ∈ C∞(X). If we write out the covector dh|x in these two
charts, we get the vectors

∇f1(dh|x) = Dh̃1|f1(x) and ∇f2(dh|x) = Dh̃2|f2(x)

where h̃1 = h ◦ f−1
1 and h̃2 = h ◦ f−1

2 . Now h̃1 and h̃2 are related by the
transition function φ21 between the two charts, in some neighbourhood of f2(x)
we have that

h̃2 = h̃1 ◦ φ12

and then the chain rule says that:

Dh̃2|f2(x) = Dh̃1|f1(x)Dφ12|f2(x)

In this equation the matrix Dh̃1|f1(x) is a row vector, and it is being transformed
into another row vector by the n-by-n matrix Dφ12|f2(x) acting on the right. If
you prefer your vectors to be column vectors, and your matrices to act on the
left, then transpose the equation:

(Dh̃2|f2(x))
> = (Dφ12|f2(x))

>(Dh̃1|f1(x))
>

This says that the linear isomorphisms ∇f1 and ∇f2 are related by:

∇f2 =
(
Dφ12|f2(x)

)> ◦ ∇f1 (7.4)

Compare this to the transformation law for tangent vectors (5.16), it is similar
but not the same.

For tangent vectors, we showed that the transformation law could be used
to give an alternative ‘physicist’s’ definition. We can do the same thing for
covectors.

Proposition 7.5. Let x be a point in a manifold X, and let Ax denote the set
of all charts containing x. A covector in T ?xX is the same thing as a function

ε : Ax → Rn

(U, f) 7→ εf
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such that, for any two charts (U1, f1), (U2, f2) ∈ Ax, we have:

εf2 =
(
Dφ12|f2(x)

)>
(εf1)

Proof. This is proved in exactly the same way as Proposition 5.20. Let T ?x X
denote the set of all such functions ε, this has an obvious vector space structure.
For any chart (U, f), the evaluation map

evf : T ?x X → Rn

ε 7→ εf

is a linear isomorphism, by exactly the same argument that proved Lemma 5.19.
Then the evident function from T ?xX to T ?x X must be a linear isomorphism,
since if we pick any chart then we can factor it as:

T ?xX
∇f−→ Rn

ev−1
f−→ T ?x X

7.2 A third definition of tangent vectors

We’ve seen that we can define tangent vectors using curves, or as an operation
turning charts into vectors. We’re now going to introduce a third definition,
which takes the point-of-view that a tangent vector is a direction in which we
can take a partial derivative of a function. Using this definition, we shall see
that the cotangent space T ?xX is the dual to the tangent space TxX.

As usual let’s start with the easy case when our manifold X is an open subset
in Rn. Fix a point x ∈ X. In this easy case we can canonically identify the
tangent space TxX with Rn, so a tangent vector v ∈ TxX is just a vector in Rn.
Given v, we can consider the operation ‘take the partial derivative at x in the
direction v’. This is an operator

∂x,v : C∞(X) −→ R

that sends a smooth function h ∈ C∞(X) to the real number:

∂x,v(h) = Dh|x(v) = v1
∂h

∂x1

∣∣∣∣
x

+ ...+ vn
∂h

∂xn

∣∣∣∣
x

(7.6)

This operator ∂x,v is a linear map, i.e. we have:

∂x,v (h1 + h2) = ∂x,v(h1) + ∂x,v(h2) and ∂x,v(λh1) = λ∂x,v(h1)

for any functions h1, h2 ∈ C∞(X) and any scalar λ ∈ R.
We can also express this operator using curves. If we want to think of TxX as

the space of curves through x modulo tangency, then we should replace v ∈ Rn
with (the class of) any curve σ such that Dσ|0 = v. Then σ is a function from
some interval (−ε, ε) into X, so h ◦ σ is a function from (−ε, ε) to R, and the
chain rule tells us that:

d(h ◦ σ)

dt

∣∣∣∣
0

= ∂x,v(h)
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Now suppose h is a function in C∞(X) that has rank zero at x. Then
∂x,v(h) = 0 automatically. This means that ∂x,v induces a well-defined linear
map

∂x,v : T ?xX −→ R
dh|x 7→ ∂x,v(h)

since T ?xX is the quotient space C∞(X)/Rx(X), and adding an element of
Rx(X) onto h doesn’t change the value of ∂x,v(h). So the operator ∂x,v is an
element of the dual vector space (T ?xX)? (a quick revision of dual vector spaces
is given in Appendix B).

Since we’re assuming X is just an open set in Rn we can canonically identify
T ?xX with Rn, by sending dh|x to the vector of partial derivatives of h. If we
make this identification then (7.6) says that ∂x,v is simply the linear map

Rn → R
u 7→ v.u

given by taking the dot product with v.
Conversely, suppose we have some linear map δ : T ?xX → R. We can identify

T ?xX with Rn, and then this linear map δ must be given by taking the dot
product with some vector v ∈ Rn (the dual space to Rn is Rn). But then δ
sends the class of a function h to the number Dh|x(v), so δ is the operator ∂x,v.

So tangent vectors are the same things as linear maps from T ?xX to R, i.e.
the tangent space is the dual space to the cotangent space.

Now let’s repeat all the above on an arbitrary manifold X. Fix a point
x ∈ X. The first step is to turn tangent vectors in TxX into operators on the
space of functions C∞(X).

Let’s adopt our first definition of tangent vectors, so an element of TxX
is the equivalence class of a curve σ : (−ε, ε) → X through x. We define an
associated linear operator:

∂σ : C∞(X)→ R (7.7)

h 7→ d(h ◦ σ)

dt

∣∣∣∣
0

Let’s look at this in co-ordinates, so pick a chart (U, f) around x. Then h
becomes a function h̃ = h ◦ f−1 ∈ C∞(Ũ), and σ becomes a curve

σ̃ = f ◦ σ : (−ε, ε)→ Ũ

through the point f(x) (possibly after shrinking ε so that the image of σ lies in
U). But the composition h̃ ◦ σ̃ equals h ◦ σ, so the the operator ∂σ sends the
function h to:

d(h̃ ◦ σ̃)

dt

∣∣∣∣∣
0

= Dh̃|f(x)Dσ̃|0 =

n∑
i=1

∂h̃

∂xi

∣∣∣∣∣
f(x)

dσ̃i
dt

∣∣∣∣
0

This expression is a row vector applied to a column vector, or if you prefer it’s
a dot product of the two vectors:

∆f ([σ]) = Dσ̃|0 and ∇f (dh|x) = Dh̃|f(x) ∈ Rn
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Yet another way to express this is to say we have applied the operator ∂f(x),v

to the function h̃, where v = Dσ̃|0.
So we have two ways to descibe what this operator ∂σ does: we can either

define it without using any charts as in (7.7), or we can say “pick a chart, write
both h and σ in co-ordinates, then take the dot product of the vectors Dh̃|f(x)

and Dσ|0”. These two prescriptions give the same answer, so in particular the
second version is definitely chart-independent.

The version written in a chart makes two things explicitly clear. Firstly,
the operator ∂σ only depends on the tangency class of the curve σ, so for any
tangent vector [σ] ∈ TxX we get a linear map from C∞(X) to R. Secondly, if
h ∈ C∞(X) has rank zero at x then ∂σ(h) = 0, and consequently we have a
well-defined linear map on the quotient space:

∂σ : T ?xX → R

This shows that for any any tangent vector in TxX there is a corresponding
element of the dual space of the cotangent space.

Proposition 7.8. Let x ∈ X be a point in a manifold. The map

TxX −→ (T ?xX)?

[σ]→ ∂σ

is a linear isomorphism.

Proof. Pick a chart (U, f) around x. Then we get isomorphisms ∆f : TxX
∼−→

Rn and ∇f : T ?xX
∼−→ Rn. Take a curve σ and a function h ∈ C∞(X), so

we have a tangent vector [σ] and a covector dh|x. The operator ∂σ sends the
covector dh|x to the dot product of ∆f ([σ]) with ∇f (dh|x), so the map in the
statement of the proposition becomes the map

Rn → (Rn)?

sending a vector v to the operation ‘dot with v’. This is a linear isomorphism.

So the tangent space TxX is the dual to the cotangent space T ?xX. For any
finite-dimensional vector space V we have a canonical isomorphism between V
and (V ?)?, so we can also interpret this an isomorphism

(TxX)? ∼= T ?xX (7.9)

between the cotangent space and the dual of the tangent space. This explains
the notation for the cotangent space.

It’s worthwhile unpacking the isomorphism (7.9) explicitly, which means
turning everything we did above around. Given a covector dh|x ∈ T ?xX, we can
define a function:

TxX → R
[σ] 7→ ∂σ(h)

Looking at this in co-ordinates shows that this is well defined and linear, and
the resulting map

T ?xX −→ (TxX)?
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is a linear isomorphism (exercise). This isomorphism is the dual to the linear
map in Proposition 7.8.

As another exercise, pick a chart around x, and consider the isomorphisms
∆f : TxX

∼−→ Rn and ∇f : T ?xX
∼−→ Rn. Then the proof of the proposition (if

you unpack the definitions) is saying that ∇f is the dual linear map to (∆f )−1,
and vice-versa.

Given the previous proposition, we have a third way to define tangent vec-
tors: we can declare that a tangent vector is a linear map from T ?xX to R, or
equivalently it’s a linear map from C∞(X) to R which vanishes on the subspace
Rx(X). However, there is a slightly better version of this definition.

Definition 7.10. Let X be a manifold and let x be a point in X. A derivation
at x is a linear map

d : C∞(X)→ R

obeying the product rule

d(h1h2) = h1(x)d(h2) + h2(x)d(h1) (7.11)

for any two functions h1, h2 ∈ C∞(X). We denote the set of all derivations at
x by Derx(X).

For any tangent vector [σ] ∈ TxX the operator ∂σ is a derivation at x, this
follows instantly from the ordinary product rule for functions of one variable.
In fact these are the only derivations at x, because:

Proposition 7.12. A linear map d : C∞(X) → R is a derivation at x if and
only if d vanishes on the subspace Rx(X) of functions having rank zero at x.

The ‘if’ direction is a straight-forward exercise, but the other direction is
tricky and we relegate it to Appendix D.

Definition 7.13 (‘Algebraist’s definition’ ). Let x be a point in a manifold X.
A tangent vector to x is a derivation at x.

We’ve already seen that tangent vectors are exactly the linear maps from
C∞(X) to R which vanish on Rx(X), so Proposition 7.12 shows that we have
an isomorphism

TxX
∼−→ Derx(X)

given by sending [σ] to ∂σ, and hence this new definition is equivalent to our
previous two. What’s nice about this definition is that it only uses the fact that
C∞(X) is a ring (or more accurately an algebra over R), so it can also be used
in more algebraic contexts.

To summarize, a tangent vector in TxX can be thought of as either:

• A curve σ through x, up to tangency at x.

• An operation turning charts around x into vectors in Rn, obeying the
tangent vector transformation law.

• An operator from C∞(X) to R, obeying the product rule at x (7.11).

• An element of the dual of T ?xX.
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If we fix a chart (U, f) around x then we can turn our tangent vector into an
explicit vector v ∈ Rn, or into an operator ∂f(x),v acting on C∞(Ũ).

A covector in T ?xX can be thought of as either:

• A function in C∞(X), modulo the subspace Rx(X).

• An operation turning charts around x into vectors in Rn, obeying the
covector transformation law.

• An element of the dual of TxX.

Of course it can be confusing that so many different perspectives exist, but
they are all useful.

7.3 Vector fields as derivations

Let’s see what vector fields look like if we adopt our third definition of tangent
vectors (Definition 7.13), as being operators on the space of functions.

We’ll start with the easy case when X is an open set in Rn. In this situation
a vector field is just a smooth function:

ξ̃ : X → Rn

At any point x ∈ X we have a we have a partial derivative operator

∂x,ξ̃|x : C∞(X)→ R

which differentiates along the vector ξ̃|x at the point x. This means that if h is
a smooth function in C∞(X), then we can define a new function

ξ̃(h) : X → R

by:
ξ̃(h) : x 7→ ∂x,ξ̃|x(h)

Explicitly, if the components of ξ̃ are ξ̃ = (ξ̃1, ...., ξ̃n) then:

ξ̃(h) = ξ̃1
∂h

∂x1
+ ... + ξ̃n

∂h

∂xn

Each function ξ̃i is smooth, and the partial derivatives of h are themselves
smooth functions, so this new function ξ̃(h) is also smooth. This means we can
view our vector field ξ̃ as an operator

ξ̃ : C∞(X)→ C∞(X)

h 7→ ξ̃(h)

which turns functions into other functions. When we want to think in this way
it’s common to write vector fields in the form:

ξ̃ =

n∑
i=1

ξ̃i
∂

∂xi

70



For example, the notation ∂
∂x1

denotes the operator h 7→ ∂x1
h. It corresponds

to a constant vector field

X → Rn

x 7→ (1, 0, ..., 0)

which sends any point to the first standard basis vector. Similarly ∂
∂xi

is a
constant vector field that maps any point to the ith standard basis vector, and
obvious any vector field is obtained by multplying these n constant vector fields
by functions in C∞(X) and then adding them together.

Recall that every operator ∂x,ξ̃|x is a derivation at x, i.e. it satisfies the

product rule (7.11). Letting x vary, this implies that the operator ξ̃ satisfies the
following version of the product rule:

ξ̃(h1h2) = h1ξ̃(h2) + h2ξ̃(h1) (7.14)

for any two functions h1, h2 ∈ C∞(X). An operator like this is called a deriva-
tion. Note the difference between a ‘derivation’ and a ‘derivation at x’.

Now let’s repeat this on an arbitrary manifold X. Suppose we have a smooth
vector field:

ξ : X → TX

At every point we have a tangent vector ξ|x ∈ TxX, and we have an associated
operator

∂ξ|x : C∞(X)→ R

which is a derivation at x. If we take a function h ∈ C∞(X) then we can define
a new function

ξ(h) : X → R

by:
ξ(h) : x 7→ ∂ξ|x(h)

We claim that (unsurprisingly) this new function ξ(h) is smooth. To see this
we have to look at ξ(h) in co-ordinates, so pick a chart (U, f). For a given
point x ∈ U , recall that we can evaluate ∂ξ|x(h) by writing both ξ|x and h in
co-ordinates, i.e. considering

v = ∆f (ξx) and h̃ = h ◦ f−1

and then applying the operator ∂f(x),v to h̃ (or taking the dot product of v with
∇f (dh|x)). We can also write ξ in this chart, it becomes the vector field:

ξ̃ : Ũ → Rn

x̃ 7→ ∆f (ξ|f−1(x̃))

So if we write the function ξ(h) in this chart we get the function:

ξ(h) ◦ f−1 : x̃ 7→ ∂x̃,ξ̃|x̃ h̃

This is exactly the function ξ̃(h̃) ∈ C∞(Ũ), obtained by applying the vector field
ξ̃ to the function h̃. Since ξ̃(h̃) is smooth, and we’re working in an arbitrary
chart, this shows that ξ(h) is indeed smooth.
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This means that our vector field ξ has given us an operator:

ξ : C∞(X)→ C∞(X)

Furthermore the product rule (7.14) holds, because for each point x the operator
∂ξ|x is a derivation at x.

Definition 7.15. A derivation on a manifold X is a linear map

D : C∞(X)→ C∞(X)

such that the product rule

D(h1h2) = h1D(h2) + h2D(h1)

holds for all h1, h2 ∈ C∞(X). The set of all derivations on X is denoted by
Der(X).

We’ve just seen that any smooth vector field ξ defines a derivation in Der(X).
The converse is also true:

Proposition 7.16. Any derivation D ∈ Der(X) defines a (smooth) vector field.

Proof. Pick a D ∈ Der(X). For a fixed point x ∈ X, we can define a linear
operator

D|x : C∞(X)→ R

by:
D|x : h 7→

(
D(h)

)
|x

The product rule (7.14) implies that D|x is a derivation at x, so by Proposition
7.12 it must be the partial derivative operator associated to some tangent vector
in TxX. Hence the function ξ : x 7→ D|x is a vector field on X.

It remains to show that ξ is smooth. Pick any chart (U, f), then in this chart
ξ becomes a vector field ξ̃ : Ũ → Rn, which we can write as

n∑
i=1

ξ̃i
∂

∂xi

for some functions ξ̃1, ..., ξ̃n : Ũ → R. We need to show is that each of these
functions ξ̃i is smooth. More specifically, let’s fix a point y ∈ U , set ỹ = f(y) ∈
Ũ , and prove that each ξ̃i is smooth at ỹ.

Let φ be a bump function on Ũ which is constantly equal to 1 inside some
neighbourhood W̃ of ỹ, and constantly equal to zero outside some larger neigh-
bourhood. We can use φ to extend smooth functions in C∞(Ũ) to smooth
functions on X, just as we did in the proof of Proposition 7.3. In particular if
we take one of the standard co-ordinates xi ∈ C∞(Ũ), we can get a function
χi ∈ C∞(X), defined by:

χi =

{
(xiφ) ◦ f inside U

0 outside U

Then if we write χi in the chart (U, f), we get a function χ̃i ∈ C∞(Ũ) which
agrees with xi inside the open neighbourhood W̃ of ỹ.
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By definition, applying our derivation D must send each χi to a smooth
function D(χi) ∈ C∞(X). Let’s compute this function D(χi) inside the open
neighbourhood W = f−1(W̃ ) of y. Its value at any point x ∈ W is given by
applying the operator D|x to χi, and we can compute this in the chart (U, f)
and see that

D(χi)|x =

n∑
j=1

ξ̃j |f(x)
∂χ̃i
∂xj

∣∣∣∣
f(x)

= ξ̃i|f(x)

since χ̃i ≡ xi in the open set W̃ . Since D(χi) is smooth, ξ̃i must be smooth
inside W̃ , and in particular smooth at ỹ.

So the set of all vector fields on X is exactly Der(X).

Example 7.17. Recall the angular vector field ξ on S1 from Example 6.2,
which takes values:

ξ|(x,y) = (−y, x)> ∈ T(x,y)S
1 ⊂ R2

Let’s express ξ as a derivation on S1.
If we use polar co-ordinates (U, f) with domain U = S1\(−1, 0), then we saw

in Example 6.5 that ξ becomes the constant vector field ξ̃ ≡ 1 on Ũ = (−π, π).
As a derivation on Ũ , this is the operator:

ξ̃ : C∞(Ũ)→ C∞(Ũ)

h̃ 7→ dh̃

dθ

Now let h be a function in C∞(S1). Thinking of ξ as an operator in Der(S1),
we can apply to h to get a new function ξ(h) ∈ C∞(S1). Within the open set
U , this function is given by

ξ(h)|U =

(
d(h ◦ f−1)

dθ

)
◦ f

(and a similar expression holds in other polar co-ordinate charts).
We can be more explicit if we assume that h is the restriction to S1 of some

smooth function ĥ ∈ C∞(R2). At any point (a, b) ∈ S1 we have a partial
derivative operator:

∂ξ|(a,b) : C∞(S1)→ R

However since T(a,b)S
1 is naturally a subspace of R2, we can also view this as a

partial derivative operator

∂ξ|(a,b) : C∞(R2)→ R

and this is given by:

ĥ 7→ −b ∂ĥ
∂x

∣∣∣∣∣
(a,b)

+ a
∂ĥ

∂y

∣∣∣∣∣
(a,b)

If ĥ ∈ C∞(R2) then we can either apply the operator ∂ξ|(a,b) , or we can first

restrict to S1 to get a function h = ĥ|S1 ∈ C∞(S1) and then apply the operator;
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it follows immediately from the definition that these two operations produce the
same real number. Consequently, we have:

ξ(ĥ|S1) =

(
−y ∂ĥ

∂x
+ x

∂ĥ

∂y

)∣∣∣∣∣
S1

∈ C∞(S1)
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8 Differential forms

8.1 One-forms

A vector field on X is a gadget that selects, for each point x ∈ X, an element
of the tangent space TxX. In an analogous way we can define a covector field,
which is something that selects a covector in T ?xX for each x ∈ X. Covector
fields are also called one-forms, because they are the first case of a more general
object called a p-form, where p can be any natural number. We will meet
p-forms later on.

Let’s define one-forms precisely, following the same procedure that we used
to define vector fields in Section 6.1. Just as we did for the tangent bundle,
we can take all the cotangent spaces T ?xX for each x ∈ X, and assemble them
together to get a set

T ?X =
⋃
x∈X

T ?xX

called the cotangent bundle. This comes with a projection function

π : T ?X → X

which sends a covector u ∈ T ?xX to the corresponding point x ∈ X.

Definition 8.1. Let X be a manifold. A covector field, or one-form, is a
function

α : X → T ?X

such that π ◦ α = 1X .

So a one-form selects a covector α|x ∈ T ?xX for every point x ∈ X.
In some ways one-forms are a lot like vector fields. For example, if our

manifold is just an open set U ⊂ Rn, then at each point x ∈ U the cotangent
space T ?xU is canonically isomorphic to Rn, so the cotangent bundle is just:

T ?U ∼= U × Rn

So a one-form on U is a function α : U → U × Rn, and it must be of the form
α = (1U , α̃) for some some function α̃ : U → Rn. This means that on U a
one-form consists of exactly the same data as a vector field. However, on more
complicated manifolds there is a difference, because the way that one-forms
change when we change co-ordinates is different from the way that vector fields
change.

Suppose X is any manifold, and α is a one-form on X. If we choose a chart
(U, f) on X then for any point x ∈ U our co-ordinates give us an isomorphism:

∇f : T ?xX
∼−→ Rn

If we restrict α to U then we can look at it in our co-ordinates, and it becomes
a one-form on Ũ given by the function:

α̃ : Ũ → Rn

x̃ 7→ ∇f (α|f−1(x̃))
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Now suppose we have two charts, and we write α in each chart, so we get
one-forms:

α̃1 : Ũ1 → Rn and α̃2 : Ũ2 → Rn

The transformation law for covectors (7.4) implies that these are related by:

α̃2|f2(x) = (Dφ12|f2(x))
>α̃1|f1(x) (8.2)

In particular α̃1 is smooth if and only if α̃2 is smooth. So just as we did for
vector fields, we may define a one-form to be smooth iff its expression in any
chart is smooth. From now on we will assume that all our one-forms are smooth.

As we did for vector fields (Proposition 6.6), we could take the transforma-
tion law (8.2) as the definition of a one-form. This means that we can specify a
one-form on X by choosing an atlas A = {(Ui, fi)} for X and choosing functions

α̃i : Ũi → Rn

such that the correct transformation law holds.

Despite their many similiarities, one-forms are probably more important
than vector fields. One reason for this is the following: for any smooth function
h ∈ C∞(X), there is an associated one-form on X, denoted by dh.

Let’s understand this first in the easy case when X is an open subset of Rn.
Fix a function h ∈ C∞(X). Then for any fixed point x ∈ X, our function h
determines a covector dh|x ∈ T ?xX, which is is just the equivalence class of h
modulo the subspace Rx(X). Since X is an open subset of Rn we can identify
T ?xX with Rn, and then dh|x is the vector of partial derivatives of h at the point
x. So we have a one-form:

dh : X → Rn

x 7→ dh|x =

(
∂h

∂x1

∣∣∣∣
x

, ... ,
∂h

∂xn

∣∣∣∣
x

)
This is a smooth one-form, since the partial derivatives of h are smooth functions
of x. Notice that if we set h to be one of the co-ordinate functions xi ∈ C∞(X)
then dxi is the constant one-form sending every point in U to the standard basis
vector ei ∈ Rn, for example dx1 is the one-form:

dx1 : x 7→ (1, 0, ..., 0)

This means that if we have any one-form α : X → Rn, we can write it as

α = α1dx1 + ...+ αndxn (8.3)

where α1, ..., αn ∈ C∞(X) are the components of α. In particular, we have

dh =
∂h

∂x1
dx1 + ...+

∂h

∂xn
dxn (8.4)

which is a very attractive equation.

Now supposeX is an arbitrary manifold. We want to show that for a function
h ∈ C∞(X), there is an associated (smooth) one-form dh. The definition is
clear; for any x ∈ X we have a covector dh|x ∈ T ?xX, so we define:

dh : X → T ?X

x 7→ dh|x
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We just need to check that this one-form is smooth. Pick any chart (U, f), then
h becomes a function h̃ ∈ C∞(Ũ). The one-form dh becomes a one-form on Ũ ,
given by the function

Ũ → Rn

x̃ 7→ ∇f (dh|f−1(x̃)) = Dh̃|x̃

i.e. if we write dh in co-ordinates, we get the one-form dh̃ on Ũ . This is always
smooth, so dh is indeed a smooth one-form on X.

Example 8.5. Let X = S2, and let h ∈ C∞(S2) be the function:

h : (x, y, z) 7→ z2

This is the restriction to S2 of a smooth function on R3, so it is smooth. There-
fore there is an associated one-form dh on S2.

Let’s examine dh in co-ordinates. If we use the chart with domain U1 =
S2∩{x > 0} and co-ordinates f1 : (x, y, z) 7→ (y, z), then h becomes the function
h̃1 = z2 ∈ C∞(Ũ1). Then dh̃1 is the one-form

dh̃1 : Ũ1 → R2

(y, z) 7→ (0, 2z)

which we could also write as
dh̃1 = 2z dz

(since dz is the constant function taking the value (0, 1) at all points). Alterna-
tively we could use the chart with domain U2 = S2 ∩ {z > 0} and co-ordinates
f2 : (x, y, z) 7→ (x, y). In this chart h becomes h̃2 : (x, y) → 1 − x2 − y2, and
dh̃2 becomes the one-form:

dh̃2 = −2x dx− 2y dy

If we wanted to we could also write down the transition function between these
two charts, and verify the transformation law (8.2).

However, it’s important to realize that not every one-form on X arises as dh
for some h ∈ C∞(X).

Example 8.6. Let X = R2, then any one-form on X is of the form

α = α1dx+ α2dy

for two smooth functions α1, α2 ∈ C∞(R2). Now suppose that there is some
h ∈ C∞(R2) such that α = dh. From (8.4) we know that

dh =
∂h

∂x
dx+

∂h

∂y
dy

which implies:
∂α1

∂y
=

∂2h

∂x∂y
=
∂α2

∂x

So we cannot hope to find such an h unless α1 and α2 obey this equation (in
fact on R2 this equation is a sufficient condition, but that is harder to show).
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The previous example gives an easy ‘local’ condition showing why one-forms
need not be d of any function; the next example shows a more subtle ‘global’
condition.

Example 8.7. Let X = T 1 = R/Z, and recall the smooth atlas from Example
2.11. This has two charts (U1, f1) and (U2, f2, having codomains Ũ1 = (0, 1)
and Ũ2 = (− 1

2 ,
1
2 ), and the transition function is:

φ21 : (0, 1
2 ) t ( 1

2 , 1) −→ (− 1
2 , 0) t (0, 1

2 )

x 7→
{

x, for x < 1
2

x− 1, for x > 1
2

A function h : X → R is, by definition, a function ĥ : R→ R which is periodic,
i.e.:

ĥ(x+ n) = ĥ(x), ∀x ∈ R, n ∈ Z

If we look at h in our two charts we just get the function ĥ (restricted to Ũ1 or

Ũ2), so h is smooth precisely if ĥ is smooth. So C∞(T 1) is the space of periodic
smooth functions on R.

Now suppose α is a (smooth) one-form on T 1. If we write it in our two
charts we get smooth functions:

α̃1 : Ũ1 → R and α̃2 : Ũ2 → R

We could also write these as α̃1dx and α̃2dx, since in either chart dx is the
constant one-form with value 1 ∈ R. Now the transition law for one-forms (8.2)
says that these two expressions are related by

α̃2|φ21(x) = α̃1|x

since the derivative of φ21 is 1 at all points. So α̃2 = α̃1 on the interval (0, 1
2 ), and

on the interval (− 1
2 ,

1
2 ) the function α̃2 is obtained by translating the function

α̃1. Specifying this data is exactly the same as specifying a (smooth) periodic
function α̂ ∈ C∞(R), with:

α̃1 = α̂|Ũ1
and α̃2 = α̂|Ũ2

So on T 1, a one-form is also the same thing a smooth periodic function on R.
Now pick h ∈ C∞(T 1), and let ĥ ∈ C∞(R) be the associated periodic

function. Then

dĥ =
dĥ

dx
dx

is a one-form on R, and the coefficient dĥ
dx is a periodic function. If we look at h

in either of our charts we get ĥ, so if we look at the one-form dh in either chart

we must get dĥ. So dĥ
dx is the periodic function associated to the one-form dh.

Now let α̂ ∈ C∞(R) be any periodic function. Is there a periodic function ĥ

such that α̂ = dĥ
dx? In other words, if α is the associated one-form on T 1, is there

a function h ∈ C∞(T 1) such that dh = α? If there is, then by the fundamental
theorem of calculus we have:∫ 1

0

α̂ dx =

∫ 1

0

dĥ

dx
dx = h(1)− h(0) = 0
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But there are plenty of periodic functions that do not satisfy this, for example
the constant function α̂ ≡ 1. So most one-forms on T 1 do not come from
functions in C∞(T 1).

The second reason that one-forms are important is because they behave
nicely with respect to smooth functions between manifolds. Suppose

F : X → Y

is a smooth function between two manifolds, and we have a one-form α on the
manifold Y . We claim that there is an associated one-form F ?α on the manifold
X, called the pull-back of α along F .

To understand this, we first have to understand the dual of the derivative.
Fix a point x ∈ X, and let y = F (x) ∈ Y . We have a linear map

DF |x : TxX → TyY

so we have a dual linear map:

DF |?x : T ?y Y → T ?xX

If we unpack the definitions, this turns out to be something very simple.

Lemma 8.8. Let F : X → Y be smooth, fix x ∈ X and let y = F (x). Take
a function h ∈ C∞(Y ), so we have a smooth function h ◦ F ∈ C∞(X). Then
DF |?x sends the covector dh|y ∈ T ?y Y to the covector d(h ◦ F )|x ∈ T ?xX.

Proof. Exercise.

If we choose charts around x and y then we can identify both TxX and
T ?xX with Rn, and both TyY and T ?y Y with Rk (here n is the dimension of X
and k is the dimension of Y ). We know that if we do this the derivative DF |x
becomes identified with the Jacobian matrix DF̃ |f(x) where F̃ is F written in
these charts; consequently DF |?x must become identified with transposed matrix
DF̃ |>f(x). One can also deduce this easily from the above lemma: in these charts

d(h ◦ F )|x becomes the vector

D(h̃ ◦ F̃ )|x̃ = Dh̃|ỹDF̃ |x̃

where x̃, ỹ and h̃ are the points x and y and the function h written in our chosen
charts. This equation expresses a row-vector being transformed into a new row
vector by a matrix acting on the right, so we must transpose it to express it in
terms of column vectors.

Now we define the pull-back of a one-form.

Definition 8.9. Let F : X → Y be smooth, and let α be a one-form on Y .
The pull-back of α along F is the one-form on X defined by:

F ?α : x 7→ DF |?x(α|F (x))

Of course we need to check that F ?α is a smooth one-form. Let’s start with
the case where X is an open set U ⊂ Rn and Y is an open set V ⊂ Rk, and we
have a smooth function:

F = (F1, ..., Fk) : U → V
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Then a one-form α on V is just a smooth function α : V → Rk. If we pick a
point z ∈ U then the linear map DF |?z is just the transpose of the Jacobian
matrix of F at z, so the pull-back of α along F is given by:

F ?α : U → Rn

z 7→ (DF |z)> α|F (z)

This is smooth, since we are multiplying a vector of smooth functions by a
matrix of smooth functions. Now we can let X and Y be any two manifolds; to
check that F ?α is smooth we have to pick charts, but then the question reduces
to the situation that we just considered. So F ?α is indeed smooth.

It’s helpful to examine what this pull-back operation looks like when we
write our one-forms in the style (8.3). Assume again that F : U → V is a
smooth function between open subsets of Rn and Rk, and let (F1, ..., Fk) be
the components of F . Write x1, ..., xn for the standard co-ordinates on U , and
y1, ..., yk for the standard co-ordinates on V .

We saw before that dyj is the constant one-form on V which sends every
point to the jth standard basis vector in Rk. If we pull it back along F , it
becomes a one-form on U given by

F ?dyj : z 7→
(
∂Fj
∂x1

, ... ,
∂Fj
∂xn

)∣∣∣∣>
z

∈ Rn

since this expression is the jth column of (DF |z)>. We may also write this as

F ?dyj =
∂Fj
∂x1

dx1 + ...+
∂Fj
∂xn

dxn (8.10)

which is another nice equation. A general one-form α on V can be written as

α = α1 dy1 + ...+ αk dyk

for some α1, ..., αn ∈ C∞(V ), and then

F ?α = (α1 ◦ F )(F ?dy1) + ...+ (αk ◦ F )(F ?dyk) (8.11)

since the value of F ?α at a point z ∈ U depends linearly on α|F (z).

If your one-form happens to be of the form dh for some function h then there
is another way to say what its pull-back is.

Lemma 8.12. If F : X → Y is a smooth function and h ∈ C∞(Y ) then:

F ?dh = d(h ◦ F )

Proof. This follows instantly from Lemma 8.8.

Notice that the equation (8.10) is actually a special case of this lemma. If
we take a smooth function F : U → V between open subsets of Rn and Rk, then
the component F j ∈ C∞(U) is the composition of F with the jth co-ordinate
function yj ∈ C∞(V ). So:

F ∗dyj = dFj =

n∑
i=1

∂Fj
∂xi

dxi
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Example 8.13. Consider the inclusion map ι : S2 → R3. Let x, y, z be the
standard co-ordinates on R3, and let α be the one-form:

α = 2z dz

Then ι?α is a one-form on S2.
Let’s look at ι?α in co-ordinates. Let’s use the chart (U2, f2) on S2 from

Example 8.5, and the trivial chart on R3, and then the map ι becomes:

ι̃ : (x, y) 7→
(
x, y,

√
1− x2 − y2

)
By (8.10) we have

ι̃?dz = −1√
1−x2−y2

(
x dx+ y dy

)
so by (8.11) we have:

ι̃?α = 2(z ◦ ι̃)ι̃∗dz = −2
(
x dx+ y dy

)
Alternatively, we can observe that α = dĥ, where ĥ ∈ C∞(R3) is the function

ĥ(x, y, z) = z2. If we let h = ĥ◦ ι = ĥ|S3 , then Lemma 8.12 says that ι?dz = dh.
So to find the expression for ι?α in the chart (U2, f2) we can write down the
expression h̃2 for h in these co-ordinates, and then compute dh̃2. This is what
we did in Example 8.5, and we got the same answer:

dh̃2 = −2x dx− 2y dy

It’s worth noticing that the transformation law for one-forms (8.2) is actually
a special case of this pull-back operation. Suppose we have two charts (U1, f1)
and (U2, f2) on X, so we have a transition function:

φ21 : f1(U1 ∩ U2)
∼−→ f2(U1 ∩ U2)

Now pick a one-form α on X, which in our charts becomes:

α̃1 : Ũ1 → Rn and α̃2 : Ũ2 → Rn

Then on the overlap, the one-forms α̃1 and α̃2 are related by pull-back along
the inverse transition function φ12, i.e. we have

α̃2 = φ?12α̃1

on the open set f2(U1 ∩ U2).

8.2 Antisymmetric multi-linear maps and the wedge prod-
uct

Our next goal is generalize one-forms to p-forms, where p can be any natural
number. We have to start by discussing quite a lot of multi-linear algebra for
vector spaces, but once we’ve got that out the way the definition of p-forms on
manifolds will be quite easy.

Let V be a vector space, of dimension n. We’ve previously consider the dual
space of all linear maps u : V → R, now we’re going to consider bilinear maps

b : V × V → R
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i.e. maps which are linear in each argument. If we choose a basis e1, ..., en for
V then b is determined by its values on each pair of basis elements, and we can
view this data as an n-by-n matrix B with entries:

Bij = b(ei, ej)

Conversely any such matrix B specifies a bilinear map b, by extending linearly
in each argument. The space of all such bilinear maps forms a vector space
under point-wise addition and scalar multiplication, and once we choose a basis
for V this vector space becomes identified with the vector space Matn×n(R). So
its dimension is n2.

In fact we’re only going to be interested in antisymmetric bilinear maps,
which means that

b(v, v̂) = −b(v̂, v)

for all v, v̂ ∈ V (which means in particular that b(v, v) = 0 for all v). If we
choose a basis for V , these correspond to antisymmetric matrices. It’s easy to
check that the antisymmetric maps form a subspace of the space of all bilinear
maps, so the set of all antisymmetric bilinear maps is a vector space. We denote
it by:

∧2V ?

Now suppose we have two elements u, û of the space V ?. We can combine them
to form an element of ∧2V ∗, by setting:

u ∧ û : V × V 7→ R
(v, v̂) 7→ u(v)û(v̂)− u(v̂)û(v)

Clearly u∧ û is an antisymmetric bilinear map. We call it the wedge product of
u and û. This wedge product is an important structure, we can think of it as a
kind of ‘multiplication’:

∧ : V ? × V ? → ∧2V ?

(u, û) 7→ u ∧ û

It’s a straight-forward exercise to check that this product is itself bilinear. It’s
also antisymmetric, since it’s clear from the definition that:

u ∧ û = −û ∧ u

Now pick a basis e1, ..., en for V , and let ε1, ..., εn be the dual basis for V ?.
Choose a pair i, j ∈ [1, n] with i < j, and form the bilinear map εi ∧ εj ∈ ∧2V ?.
Applying this to pairs of basis vectors in V we get:

εi ∧ εj : (es, et) 7→

 1, s = i and t = j
−1, s = j and t = i
0, otherwise

So εi ∧ εj corresponds to the matrix with a 1 in the (i, j) position (which is
above the diagonal), a −1 in the (j, i) position (which is below the diagonal),
and zeroes everywhere else. Clearly this set of matrices forms a basis for the
space of all antisymmetric n-by-n matrices, so the set

{εi ∧ εj ; i < j} ⊂ ∧2V ?
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is a basis. In particular, we have:

dim∧2V ? =

(
n

2

)
We can use these bases to describe the wedge product explicitly. If we take two
elements

u = λ1ε1 + ...+ λnεn and û = µ1ε1 + ...+ µnεn ∈ V ?

(here λ1, ..., λn and µ1, ..., µn are just real numbers) then their wedge product
is:

u ∧ û =
(
λ1µ2 − λ2µ1

)
ε1 ∧ ε2 +

(
λ1µ3 − λ3µ1

)
ε1 ∧ ε3 + ...

...+
(
λn−1µn − λnµn−1

)
εn−1 ∧ εn

Example 8.14. Let V = R3, and e1, e2, e3 be the standard basis. Then V ? is
also R3, and ε1, ε2, ε3 is again the standard basis. The dimension of ∧2V ? is(

3
2

)
= 3, and it has a basis:

{ε2 ∧ ε3, ε1 ∧ ε3, ε1 ∧ ε2}

Using these bases, the wedge product of two vectors (λ1, λ2, λ3) and (µ1, µ2, µ3)
is:

(λ2µ3 − λ3µ2, λ1µ3 − λ3µ1, λ1µ2 − λ2µ1)

If we flip the sign of the basis vector ε1 ∧ ε3, then the formula above becomes
the usual cross-product of vectors in R3. This explains why there is no direct
analogue of the cross-product in other dimensions, since if n 6= 3 then

(
n
2

)
6=

n. In other dimensions, the ‘cross-product’ of two vectors is really the wedge

product, and it lands in R(n2).

We know that a linear map F : V → W induces a dual linear map F ? :
W ? → V ?. It also induces a linear map

∧2F ? : ∧2W ? → ∧2V ?

defined by
∧2F ?(b) : (v, v̂) 7→ b

(
F (v), F (v̂)

)
∈ R

for b ∈ ∧2W ? and v, v̂ ∈ V . It’s easy to check that ∧2F ?(b) really is an element
of ∧2V ?, and that ∧2F ? really is linear in b. In terms of matrices, moving from
F to ∧2F ? is a rather complicated operation that turns a k-by-n matrix into
an
(
n
2

)
-by-

(
k
2

)
matrix (you have to take the determinants of each 2× 2 minor),

it’s generally easier to work with the abstract definition.
It follows immediately from the definition that if F : V →W andG : W → U

are two linear maps then we have:

∧2(G ◦ F )? = ∧2F ? ◦ ∧2G?

In particular, if F is an isomorphism, then so is ∧2F ?. If you know what a
functor is, this says that the operation which sends V to ∧2V ? is a contravariant
functor (as is the operation which sends V to V ?).
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Now fix a natural number p. We’re going to generalize from ∧2V ? to ∧pV ?.
For any p we can consider p-linear maps from V to R:

c : V ×p → R

where V ×p means V × ...(p times)... × V . If we choose a basis e1, ..., en for V
then c gives us a ‘p-dimensional array’ of numbers

Ci1,...,ip = c(ei1 , ..., eip)

by evaluating c on each p-tuple of basis vectors, and conversely any such array
of numbers determines a p-linear map by extending linearly in each argument.
Hopefully it’s clear that the set of all p-linear maps from V to R is a vector
space, of dimension np.

We say that c is antisymmetric if c flips sign when we swap any two of its
arguments, i.e.

c(v1, ..., vp) = −c(vσ(1), ..., vσ(p))

for any transposition σ acting on the set {1, ..., p}. In particular this means that
if we set any two of its arguments to be the same vector, then c must give the
answer zero. If we apply a more general permutation σ ∈ Sp, we must have:

c(v1, ..., vp) = (−1)σc(vσ(1), ..., vσ(p))

where (−1)σ is our notation for the sign of the permutation σ.
The antisymmetric maps form a subspace of the space of all p-linear maps

from V to R, and we denote this vector space by:

∧pV ?

Note that in the case p = 1 the antisymmetry condition is vacuous, so ∧1V ? is
just V ?.

We’ve seen that two elements of V ? can be ‘wedged’ together to get an
element of ∧2V ?. Similarly, if we have p elements u1, ..., up of V ?, then we can
combine them to get an element of ∧pV ?, which we denote by u1 ∧ ...∧ up. We
define it to be the map

u1 ∧ ... ∧ up : V ×p → R

which sends a p-tuple (v1, ..., vp) to the real number:∑
σ∈Sp

(−1)σu1(vσ(1)) ... up(vσ(p)) ∈ R (8.15)

This map is clearly linear in each argument, and by construction it’s antisym-
metric, so it is indeed an element of ∧pV ?.

Hence we’ve defined a ‘p-fold wedge product’:

(V ?)×p → ∧pV ?
(u1, ..., up) 7→ u1 ∧ ... ∧ up

This product is p-linear and antisymmetric, since the expression (8.15) is linear
in each ui, and changes sign if we switch any ui and uj . In particular if any two
ui and uj are equal then we get the zero element of ∧pV ?.
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Now suppose we choose a basis e1, ..., en for V , so we get a dual basis ε1, ..., εn
for V ?. We can produce elements in ∧pV ? by picking an p-tuple (i1, ..., ip) of
integers in [1, n] and then forming the wedge product εi1 ∧ ...∧εip . If any entries
in our p-tuple are repeated then this product must be zero. If our p-tuple
contains no repeated entries, then it must be of the form (σ(j1), ..., σ(jp)) for
some ‘correctly-ordered’ p-tuple j1 < ... < jp and some permutation σ ∈ Sp.
Then antisymmetry implies that:

εσ(j1) ∧ ... ∧ εσ(jp) = (−1)σεj1 ∧ ... ∧ εjp
So up to sign, this procedure creates one element of ∧pV ? for each subset of
[1, n] of size p.

Proposition 8.16. Let e1, ..., en be a basis for V , and let ε1, ..., εn be the dual
basis for V ?. Then the set of elements{

εi1 ∧ εi2 ∧ .... ∧ εip | 1 ≤ i1 < i2 < ... < ip ≤ n
}
⊂ ∧pV ?

is a basis. In particular:

dim∧pV ? =

(
n

p

)
If V = Rn and e1, ..., en is the standard basis, then this proposition provides

us with a basis for the space ∧p(Rn)?. This means that we can identify ∧p(Rn)?

with R(np) if we wish, but this is not quite canonical, since there’s no preferred
way to order the basis vectors in ∧p(Rn)?.

Proof. Choose a ‘correctly-ordered’ p-tuple i1 < ... < ip with each entry in
[1, n], and form the p-linear map εi1 ∧ ... ∧ εip ∈ ∧pV ?. Now take an arbitrary
p-tuple (j1, ..., jp) of numbers from the set [1, n], and consider evaluating the
map εi1 ∧ ... ∧ εip on the p-tuple of basis vectors

(ej1 , ..., ejp) ∈ V ×p

using the defining formula (8.15). We can only get a non-zero result if the p-
tuple (j1, ..., jp) is a permutation of the p-tuple (i1, ..., ip), in particular there
must be no repetitions in the first p-tuple. So we have

εi1 ∧ ... ∧ εip : (eiσ(1) , ..., eiσ(p)) 7→ (−1)σ

for each σ ∈ Sp, and it vanishes on every other p-tuple of basis vectors.
A general antisymmetric p-linear map c is determined by its values on each p-

tuple of basis vectors for V . It must vanish on p-tuples containing any repetition,
and if j1 < ... < jp is a correctly-ordered p-tuple then we must have

c : (ejσ(1) , ..., ejσ(p)) 7→ (−1)σc(ej1 , ..., ejp)

for each σ ∈ Sp. This means that c can be written as a linear combination

c =
∑

i1<...<ip

c(ei1 , ..., eip)εi1 ∧ ... ∧ εip

since both sides agree on any p-tuple of basis vectors for V .
This shows that this set of elements span ∧pV ?. Futhermore if some linear

combination of them gives the zero map then each coefficent must be zero, so
they’re linearly independent.
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So the spaces ∧pV ? initially get larger as we increase p, but once p > n/2
then they start to get smaller again, and indeed we have a symmetry

dim∧pV ? = dim∧n−pV ?

for 1 ≤ p ≤ n− 1. The space ∧nV ? is only 1-dimensional, so there is a unique
antisymmetric n-linear map from V to R, up to scale. For p > n the space
∧pV ∗ is zero-dimensional, so there are no antisymmetric p-linear maps at all,
except for the zero map.

We can extend the definition down to p = 0 by declaring that ∧0V ? = R.
This is analogous to the rule that x0 = 1 for real numbers, and it satisfies
dim∧0V ? = 1 =

(
n
0

)
.

An element of ∧pV ? is called decomposable if it lies in the image of the
‘p-fold wedge product’ (V ?)×p → ∧pV ?, i.e. if it can be written in the form
u1 ∧ ...∧ up. Proposition 8.16 implies that any element of ∧pV ? can be written
as a linear combination of decomposable elements. However, it is not true that
every element is decomposable (see Problem Sheets).

If F : V →W is a linear map, then we get an induced linear map

∧pF ? : ∧pW ? → ∧pV ?

just as we did in the case p = 2, by defining:

∧pF ?(c) : (v1, ..., vp) 7→ c
(
F (v1), ..., F (vp)

)
Again it’s immediate that ∧p(G ◦ F )? = ∧pF ? ◦ ∧pG?. For a decomposable
element c = u1 ∧ ... ∧ up, it’s easy to check that

∧pF ?(u1 ∧ ... ∧ up) =
(
F ?(u1)

)
∧ ... ∧

(
F ?(up)

)
(8.17)

(apply both sides to any p-tuple (v1, ..., vp) ∈ V ×p and check that they give the
same number). We extend down to the case p = 0 by declaring that for any F ,
the map ∧0F ? is just the identity map from ∧0W ? = R to ∧0V ? = R.

If we try to understand ∧pF ? in terms of matrices then it gets rather com-
plicated, but there is one simple special case which we’ll now explain. Assume
that dimV = dimW = n, and consider ∧nF ?. Pick bases e1, ..., en for V and
f1, ..., fn for W , so we can express F as a matrix M ∈ Matn×n(R) where:

F : ei 7→M1,if1 + ...+Mn,ifn

Now let ε1, ..., εn ∈ V ? and φ1, ..., φn ∈ W ? be the dual bases. We know that
∧nV ? and ∧nW ? are both one-dimensional, with basis vectors ε1 ∧ ... ∧ εn and
φ1∧...∧φn, so the ‘matrix’ describing ∧nF ? is a single real number. To compute
this number, we observe that

∧nF ?(φ1 ∧ ... ∧ φn) : (e1, ..., en) 7→ φ1 ∧ ... ∧ φn
(
F (e1), ..., F (en)

)
=
∑
σ∈Sp

(−1)σφ1

(
F (eσ(1))

)
...φn

(
F (eσ(n))

)
=
∑
σ∈Sp

(−1)σM1,σ(1)...Mn,σ(n)

= det(M)
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so:
∧nF ?(φ1 ∧ ... ∧ φn) = det(M) ε1 ∧ ... ∧ εn (8.18)

This is an important observation that we will use later on.

The next thing we want to do is extend the wedge product to give a bilinear
product

∧pV ? ×∧qV ? → ∧p+qV ∗ (8.19)

for any p and q. It is possible to write down an explicit formula for this product,
but it’s not very enlightening, so instead we’re going to approach it indirectly.

Suppose we have two decomposable elements:

u1 ∧ ... ∧ up ∈ ∧pV ? and û1 ∧ ... ∧ ûq ∈ ∧qV ?

Clearly we would like their wedge product to be given by:(
u1 ∧ ... ∧ up

)
∧
(
û1 ∧ ... ∧ ûq

)
= u1 ∧ ... ∧ up ∧ û1 ∧ ... ∧ ûq

Since everything is a linear combination of decomposable elements we should
be able to extend this rule bilinearly, and define the wedge product of any two
elements. However it’s not immediately obvious that this is well-defined, because
the expression of an element in ∧pV ? as a linear combination of decomposable
elements is not at all unique.

Alternatively, we could fix a basis for V , and use the induced bases for all
the ∧pV ?’s as above. Then if we take a basis vector εi1 ∧ ...∧ εip in ∧pV ?, and
a basis vector εj1 ∧ ... ∧ εjq in ∧qV ?, their wedge product should be:

εi1 ∧ ... ∧ εip ∧ εj1 ∧ ... ∧ εjq ∈ ∧p+qV ? (8.20)

This product is zero if the two subsets {i1, ..., ip} and {j1, ..., jq} ⊂ [1, n] are not
disjoint. If they are disjoint, there’s some ‘shuffle’ permutation σ ∈ Sp+q that
returns the (p+q)-tuple (i1, ..., iq, j1, ..., jq) to its correct order, and the product
(8.20) is equal to (−1)σ times the corresponding basis vector in ∧p+qV ?.

This rule defines the wedge product (8.19) on each pair of basis vectors,
then we can extend bilinearly. This approach is perfectly well-defined, but it’s
not obvious that it doesn’t depend on our choice of basis. The next lemma
says that both of these approaches work and give the same thing; so the first is
well-defined, and the second is basis-independent.

Lemma 8.21. For each p, q there is a unique bilinear map from ∧pV ?×∧qV ?
to ∧p+qV ? which makes the following triangle commute:

(V ?)×p × (V ?)×q ∧pV ? ×∧qV ?

∧p+qV ?

Proof of Lemma 8.21. Suppose we’ve found such a bilinear map (the vertical
arrow in the triangle). Choose a basis ε1, ..., εn of V ?. If we take any two basis
vectors εi1 ∧ ... ∧ εip ∈ ∧pV ? and εj1 ∧ ... ∧ εjq ∈ ∧qV ? then commutativity
of the triangle forces the product of these two basis vectors to be given by
the expression (8.20), and then bilinearity determines all other products. This
proves uniqueness.
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Now we prove existence. Pick a basis again, and define a map ∧pV ?×∧qV ?
to ∧p+qV ? by applying the rule (8.20) for each pair of basis vectors, and then
extending bilinearly. We have to check that this product really does make the
triangle commute, and by multi-linearity it’s sufficient to check this on any
(p + q)-tuple (εi1 , ..., εip , εj1 , .., εjq ) of basis vectors for V ?. If any entries are
repeated in this (p + q)-tuple then going either way around the triangle gives
the answer zero. If no entries are repeated then going either way around the
triangle gives ± the corresponding basis vector in ∧p+qV ?, so we just need to
check that the signs match. If go diagonally across the triangle then we get the
sign of the permutation σ ∈ Sp+q that restores this (p + q)-tuple to its correct
order. We can factor σ as ‘first correctly order (i1, ..., ip), then correctly order
(j1, ..., jq), then shuffle them together’, and this corresponds exactly to the sign
that we pick up by going the other way around the triangle.

This extended version of the wedge product behaves very nicely, as the next
proposition shows.

Proposition 8.22. (i) For any c ∈ ∧pV ?, ĉ ∈ ∧qV ? and c ∈ ∧rV ?, we
have:

c ∧ (ĉ ∧ c) = (c ∧ ĉ) ∧ c ∈ ∧p+q+rV ?

(ii) For any c ∈ ∧pV ? and ĉ ∈ ∧qV ? we have:

c ∧ ĉ = (−1)pq ĉ ∧ c ∈ ∧p+qV ?

(iii) If we have a linear map F : U → V then for any c ∈ ∧pV ? and ĉ ∈ ∧qV ?
we have:

∧p+qF ?(c ∧ ĉ) =
(∧pF ?(c)) ∧ (∧qF ?(ĉ))

Proof. By bilinearity it’s sufficient to check all properties on decomposable ele-
ments:

c = u1 ∧ ... ∧ up, ĉ = û1 ∧ ... ∧ ûq, c = u1 ∧ ... ∧ ur

Property (i) is obvious. Property (ii) just says that the sign of the permutation(
(p+1)...(p+q)1....p

)
∈ Sp+q is (−1)pq. Property (iii) follows immediately from

the observation (8.17).

We can also extend the wedge product down to the case when p = 0 (or
q = 0), by declaring that if λ ∈ ∧0V ? = R and c ∈ ∧qV ? then λ ∧ c is just λc,
the scalar multiple. It’s trivial to check that the properties in Proposition 8.22
continue to hold in this case.

If we take the direct sum of all our ∧pV ?’s we get a single vector space

∧•V ? =

n⊕
p=0

∧pV ?

called the exterior algebra of V ?. We can give ∧•V ? a (bilinear) multiplication
by using our wedge product for each component. Property (i) in Proposition
8.22 says that this structure is an associative algebra, and it has a unit 1 ∈
∧0R. Property (ii) in the proposition says that this algebra is supercommutative.
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Property (iii) says that ∧• is a contravariant functor from vector spaces to
algebras.

If these words are unfamiliar, don’t worry, you may safely ignore the last
paragraph.

8.3 p-forms

Finally we can return to manifolds!
If X is a manifold of dimension n, and x is a point in X, then we have a

vector space TxX. Hence for any p ≥ 0 we may form the vector space of all
p-linear antisymmetric maps from TxX to R, and this is conventionally denoted
by:

∧pT ?xX
(rather than ∧p(TxX)?). In the case p = 1 we know that ∧1(TxX)∗ is just
(TxX)∗, but this is precisely the cotangent space T ?xX (Proposition 7.8). So
at each point x ∈ X we have a sequence of vector spaces, starting with the
cotangent space to x, and ending with the 1-dimensional space ∧nT ?xX. We
can also go down to p = 0, since our convention says that ∧0T ?xX = R.

If we let x vary, we can form the set

∧pT ?X =
⋃
x∈X
∧pT ?xX

which is called the p-th wedge power of the cotangent bundle. This comes with
a projection map π : ∧pT ?X → X which maps an element of ∧pT ?xX down to
the corresponding point x ∈ X.

Definition 8.23. A p-form on X is a function α : X → ∧pT ?X such that
π ◦ α = 1X .

So a p-form selects an element of ∧pT ?xX for each x ∈ X. If we don’t wish
to specify p we can use the phrase differential form, which means a p-form,
for some p. In the case p = 1 we recover one-forms. Also notice what happens
in the case p = 0: since ∧0T ?xX = R for all points x ∈ X, the set ∧0T ?X is
simply X × R, and a 0-form is just a function from X to R.

We still need to give a definition of a smooth p-form, but this is very similar
to the story that we saw for vector fields and one-forms. If our manifold is
just an open set U ⊂ Rn then each tangent space TxU is just Rn, so ∧pT ?xU
is canonically isomorphic to ∧p(Rn)?. Recall that this is a vector space of
dimension

(
n
p

)
, and it has a ‘standard basis’ provided by Proposition 8.16. So

∧pT ?U ∼= U ×∧p(Rn)?

and a p-form on U is the same thing as a function from U to ∧p(Rn)?. If

we want to we can identify ∧p(Rn)? with R(np) by choosing an ordering of the

standard basis, then a p-form on U is just a function from U to R(np). So we
know what it means for a p-form on U to be smooth.

Now suppose X is an arbitrary manifold, and we choose a chart (U, f) on
X. Then for each x ∈ U we have an isomorphism ∆f : TxX

∼−→ Rn, so we get
an induced isomorphism

∧p
(

∆−1
f

)?
: ∧pT ?xX ∼−→ ∧p(Rn)?

89



(in the case p = 1 this the usual isomorphism (∆−1
f )? = ∇f ). If α is a p-form

on X then we can look at it in these co-ordinates, and it becomes a p-form

α̃ : Ũ −→ ∧p(Rn)?

x 7→ ∧p
(

∆−1
f

)? (
α|f−1(x)

)
on Ũ . If we change co-ordinates by some transition function φ21, then the two
expressions for α will be related by applying the linear map

∧p (Dφ12|f2(x)

)?
: ∧p(Rn)? → ∧p(Rn)? (8.24)

at each point. This is a matrix of smooth functions (of size
(
n
p

)
×
(
n
p

)
), so if α

looks smooth in the first chart then it will also look smooth in the second chart.
So just as we did for vector fields and one-forms, we may define a smooth p-form
on X to be a p-form that becomes smooth when we write it in any chart.

If we have a p-form α, and a q-form β, then we can ‘wedge them together’
by forming their wedge-product at every point. This gives us a (p+ q)-form:

α ∧ β : X → ∧p+qT ?X
x 7→ α|x ∧ β|x ∈ ∧p+qT ?xX

We claim that if α and β are smooth then α ∧ β is also smooth. As usual we
only need to check this claim in the special case that our manifold is an open set
in Rn, because on any other manifold we just pick a chart and then it reduces
to that case. So let’s examine this ‘wedging’ process in that special case.

Let X = U ⊂ Rn be an open subset, and let x1, ..., xn be the standard
co-ordinates on U . Recall that each co-ordinate function xj ∈ C∞(U) gives us
a constant one-form dxj , and at any point z ∈ U the covector dxj |z is the jth
standard basis vector in T ?z U

∼= Rn. This means that if we take a correctly-
ordered p-tuple i1 < ... < ip, and form the function

dxi1∧ ... ∧ dxip : U → ∧p(Rn)?

then at any point z ∈ U this function just gives us one of the standard basis
vectors in ∧p(Rn)?. This is a constant function, so it’s certainly smooth, and
so this is a smooth p-form.

A general p-form on U is given by some smooth function α : U → ∧p(Rn)?,
so it has one component αi ∈ C∞(U) for each correctly-ordered p-tuple i =
{i1 < ... < ip}. Then we may write α as

α =
∑
i

αi dxi1∧ ... ∧ dxip

where i runs over all correctly-ordered p-tuples.
Now we can look at the wedge product of two differential forms on U . For

example, if we have two 1-forms

α = α1dx1 + ...+ αndxn and β = β1dx1 + ...+ βndxn

then their wedge-product is the two-form:

α ∧ β =
∑
i<j

(αiβj − αjβi) dxi ∧ dxj
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All the coefficient functions are obviously smooth. In general, if we wedge
together a p-form α and a q-form β then the coefficient functions for α ∧ β will
be linear combinations of products of the coefficient functions for α and β, so
this is inded a smooth (p+ q)-form.

So on a general manifold, we have a ‘wedge product’ on smooth differential
forms. Moreover it follows instantly from parts (i) and (ii) of Proposition 8.22
that we have

α ∧ β = (−1)pqβ ∧ α

and
(α ∧ β) ∧ γ = α ∧ (β ∧ γ)

for any p-form α, any q-form β, and any r-form γ. As a special case we can
‘wedge’ a p-form α with a 0-form, and this just means we multiply α by a
function h ∈ C∞(X).

If have a smooth function F : X → Y between two manifolds, then we’ve
already seen that we can pull-back 1-forms along F . This is also true for p-forms,
since if α is a p-form on Y then we can define a p-form on X by:

F ?α : X → ∧pT ?X
x 7→ ∧p(DF |x)?

(
α|F (x)

)
We need to check that F ?α is smooth, but we should first note that it follows
immediately from Proposition 8.22(iii) that

F ?(α ∧ β) = F ?(α) ∧ F ?(β) (8.25)

for any two differential forms α and β on Y . Now it is easy to check that F ?α
is smooth, because in co-ordinates we can write α as a linear combination of
wedge products of one-forms, but we know that the pull-back of a one-form is
smooth, and that the wedge-product of any differential forms is always smooth.

Notice that if α is just a zero-form, i.e. an element of C∞(Y ), then F ?α is
just α ◦ F ∈ C∞(X). This is because by definition ∧0(DF |x)? is always the
identity map on R.

Example 8.26. Let U = R>0×(−π, π) ⊂ R2, and consider the smooth function

F : U → R2

(r, θ) 7→ (r cos θ, r sin θ)

(the inverse to polar co-ordinates). The one-forms dx and dy on R2 pull-back
via F to give one-forms

F ?dx = cos θ dr − r sin θ dθ and F ?dy = sin θ dr + r cos θ dθ

on U , so the 2-form dx ∧ dy must pull-back to give the 2-form:

F ∗(dx ∧ dy) =
(

cos θ dr − r sin θ
)
∧
(

sin θ dr + r cos θ dθ
)

= r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr
= r dr ∧ dθ
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We noted earlier that the transformation law for one-forms is actually just
‘pull-back along the transition function’, and the same thing is true for p-forms.
Suppose we have a p-form α on X, and we write it in two different charts, so we
get p-forms α̃1 on Ũ1 and α̃2 on Ũ2. Then the transformation law (8.24) says
exactly that

α̃2 = φ?12α̃1

(on the open set f2(U1∩U2) ⊂ Ũ2). As for vector fields and one-forms, we could
take this transformation law as the definition of a p-form if we wished.

If we try and write this transformation law explicitly in terms of the Jacobian
matrix Dφ12|f2(x) then it generally gets rather complicated. However, it is very
easy in the special case of n-forms (where n = dimX). If α is an n-form, then
in each chart α just becomes smooth functions:

α̃1 : Ũ1 → R and α̃2 : Ũ2 → R

By our observation (8.18), on the overlap these functions are related by:

α̃2|f2(x) = det
(
Dφ12|f2(x)

)
α̃1|f1(x) (8.27)

So n-forms transform by the determinant of the Jacobian matrix of the transition
function.

Example 8.28. Look again at Example 8.26. We have detDF |(r,θ) = r, so

F ?(dx ∧ dy) = det(DF ) dr ∧ dθ = r dr ∧ dθ

as we saw before.

8.4 The exterior derivative

There is an extremely important operation that can be performed on differential
forms, called the exterior derivative.

Let’s denote the set of all (smooth) p-forms on X by:

Ωp(X)

This is a vector space, and it’s clearly infinite-dimensional, because we can
produce a huge number of p-forms on X by picking a p-form in some chart and
then extending it to X with a bump function. In the case p = 0, we have that
Ω0(X) = C∞(X), since 0-forms are just smooth functions from X to R. Now
recall that for any smooth function h ∈ C∞(X) we produced a one-form dh,
and in co-ordinates this is given by:

dh =
∂h

∂x1
dx1 + ...+

∂h

∂xn
dxn

So we have an operator:

d : Ω0(X)→ Ω1(X)

h 7→ dh

What we want to do is extend this to an operator

d : Ωp(X)→ Ωp+1(X)
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for all p.
We’ll begin by assuming X is an open set U ⊂ Rn, and we’ll let x1, ..., xn

be the co-ordinate functions on U . Suppose we have a p-form α which has only
one non-zero component, so

α = αi dxi1 ∧ ... ∧ dxip

where i = (i1 < ... < ip) is a single correctly-ordered p-tuple, and αi ∈ C∞(U).
Then we define:

dα = dαi ∧ dxi1 ∧ ... ∧ dxip

=

n∑
j=1

∂αi

∂xj
dxj ∧ dxi1 ∧ ... ∧ dxip (8.29)

Some of the terms in this sum will be zero, since when j is equal to one of the it
then that wedge product of one-forms is zero. So there will be one (potentially)
non-zero component of dα for each j which does not appear in the p-tuple i,
and if we want to write it in terms of our standard basis then we pick up a ±1
when we apply the permutation which returns the (p+ 1)-tuple (j, i1, ..., ip) to
its correct order.

The expression (8.29) is linear in αi, so we can extend it to a linear operator:

d : Ωp(U)→ Ωp+1(U)

Together, these operators are called the exterior derivative (or the de Rham
differential).

Example 8.30. Let X = R3, with co-ordinates x, y and z. If we have a one-
form α = α2 dy for some α2 ∈ C∞(R2), then:

dα =
∂α2

∂x
dx ∧ dy − ∂α2

∂z
dy ∧ dz

More generally, if
α = α1 dx+ α2 dy + α3 dz

then:

dα =

(
∂α2

∂x
− ∂α1

∂y

)
dx∧dy +

(
∂α3

∂x
− ∂α1

∂z

)
dx∧dz +

(
∂α3

∂y
− ∂α2

∂z

)
dy∧dz

You might recognise this formula - if we flip the sign of middle term, which we
can do by deciding to write things in terms of dz ∧ dx instead of dx ∧ dz, then
this is the formula for the curl operator ∇× which turns a vector field on R3

into another vector field on R3. However it’s more natural to interpret it as an
operator that turns one-forms into 2-forms.

The exterior derivative has many nice properties.

Proposition 8.31. (i) For any α ∈ Ωp(U) we have:

d(dα) = 0 ∈ Ωp+2(U)
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(ii) For any α ∈ Ωp(U) and β ∈ Ωq(U) we have:

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ ∈ Ωp+1(U) (8.32)

(iii) If V is an open set in Rk and F : U → V is a smooth function, then for
any α ∈ Ωp(V ) we have:

d(F ?α) = F ?dα ∈ Ωp(U)

A good way to remember the sign in part (ii) is to pretend that the symbol
d behaves a bit like a one-form, so if we want to permute it past the p-form
α then we pick up a sign (−1)p. Notice that (8.32) is formally similar to the
product rule for derivations, and in fact d is indeed a ‘derivation’ in a more
general sense.

Proof. (i). By linearity it’s enough to prove the result for an α which has a
single component αi for some i. Applying the formula (8.29) twice, we get
the (p+ 2)-form:

d(dα) =

n∑
m=1

n∑
j=1

∂2αi

∂xm∂xj
dxm ∧ dxj ∧ dxi1 ∧ ... ∧ dxip

This sum has a (potentially) non-zero term for every pair m, j such that
m 6= j and neither m nor j appear in i. However, the double partial

derivative ∂2αi

∂xm∂xj
is symmetric in m and j, and the wedge product dxm ∧

dxj is antisymmetric in m and j, so these terms cancel in pairs.

(ii). Firstly suppose that α and β are just zero-forms, i.e. elements of C∞(Ũ).
Then (8.32) says that

d(αβ) = β dα+ αdβ

(since for zero-forms the wedge-product is ordinary point-wise multiplica-
tion), and this is true by the product rule for partial differentiation.

Now let α ∈ C∞(U) be a zero-form, and let β be the constant q-form
dxi1∧ ...∧dxiq . Then the formula (8.29) says that dβ = 0, and it also says
that

d(αdxi1∧ ... ∧ dxiq ) = dα ∧ dxi1 ∧ ... ∧ dxiq
so this special case of (8.32) is also true.

Now let α be a p-form with a single component, and β be a q-form with
a single component, so

α = αi dxi1 ∧ ... ∧ dxip and β = βj dxj1 ∧ ... ∧ dxjq
with αi, βj ∈ C∞(U). Then:

d(α ∧ β) = d
(
αiβj dxi1∧ ... ∧ dxip∧ dxj1∧ ... ∧ dxjp

)
= (βj dαi + αi dβj) ∧ dxi1∧ ... ∧ dxip∧ dxj1∧ ... ∧ dxjp
= (dαi ∧ dxi1∧ ... ∧ dxip) ∧ (βj dxj1∧ ... ∧ dxjq )

+ (−1)p(αi dxi1∧ ... ∧ dxip) ∧ (dβj ∧ dxj1∧ ... ∧ dxjq )
= dα ∧ β + (−1)pα ∧ dβ

So by linearity (8.32) holds for any p-form and any q-form.
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(iii). We’ve already proved the case p = 0 in Lemma 8.12, since if α is a zero-
form then F ?α is just α ◦ F . Now suppose α = αi dxi1 ∧ ... ∧ dxip is a
p-form with a single component. Then

F ?α = (αi ◦ F ) (F ?dxi1) ∧ ... ∧ (F ?dxip)

by (8.25). Now for any k, we have F ?dxk = d(xk ◦ F ) by Lemma 8.12, so
d(F ?dxk) = 0 by part (i) of this proposition. Then repeatedly applying
part (ii) of this proposition shows that:

d(F ?α) = d(αi ◦ F ) ∧ (F ?dxi1) ∧ ... ∧ (F ?dxip)

Hence

d(F ?α) = (F ?dαi) ∧ (F ?dxi1) ∧ ... ∧ (F ?dxip)

= F ?
(
dαi ∧ dxi1 ∧ ... ∧ dxip

)
= F ?dα

as required.

Now we want to define the exterior derivative on an arbitrary manifold X.
Obviously, when we work in co-ordinates it should reduce to the operations
that we’ve just defined. In fact, this requirement is a valid way to define the
operation d on X.

Lemma 8.33. Let α ∈ Ωp(X) be a p-form. Then there exists a unique (p+ 1)-
form dα on X such that, for any chart (U, f) on X, when we write dα in this
chart we get

dα̃ ∈ Ωp+1(Ũ)

where Ũ is the codomain of the chart and α̃ is the expression for α in this chart.

Proof. Consider the rule that assigns to any chart (U, f), the (p + 1)-form dα̃
on Ũ . We claim that this rule is actually a (p+1)-form on X in the ‘physicist’s’
sense, i.e. it obeys the correct transformation law when we change co-ordinates.

So we just need to check that dα̃ transforms correctly. If we have two charts
(U1, f1) and (U2, f2), then in each chart the p-form α turns into two smooth
functions α̃1 and α̃2 from Ũ to ∧p(Rn)?. These functions are related by the
transformation law

α̃2 = φ?12α̃1

where the two charts overlap. But by Proposition 8.31(iii), we have

dα̃2 = φ?12dα̃1

and this is the correct transformation law for a (p+ 1)-form on X.

We have shown that on any manifold X, and any p, we have a exterior
derivative:

d : Ωp(X)→ Ωp+1(X)

Futhermore it’s immediate that the three properties listed in Proposition 8.31
all hold, since each of them can be checked in co-ordinates.
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You might (in fact you should) find the previous proof a bit unsatisfactory,
it would be better to find a definition of d that didn’t rely on picking charts. It
is possible to give such a definition, but it’s not very straight-forward.

The main use for the exterior derivative is to define de Rham cohomology.

Definition 8.34. Let α ∈ Ωp(X) be a differential form. We say that α is
closed if dα = 0. We say that α is exact if there is some β ∈ Ωp−1(X) such
that dβ = α.

Since d◦d = 0 (Proposition 8.31 (i)), any exact form is automatically closed,
so we have inclusions:

{exact p-forms} ⊂ {closed p-forms} ⊂ Ωp(X)

Also both subsets are actually subspaces, since they are the image or kernel of
a linear map.

Definition 8.35. For each p ∈ [0, n], the p-th de Rham cohomology group
of X is defined to be the quotient vector space:

Hp
dR(X) =

{closed p-forms}
{exact p-forms}

The word ‘group’ here is just historical; this is object indeed an abelian
group, but it’s also a real vector space. De Rham cohomology is a fundamental
topological invariant for manifolds.
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9 Integration

If we have an open set U ⊂ Rn, and a smooth function h ∈ C∞(U), we can try
to compute the multiple integral:∫

U

h dx1...dxn

As long as the function h doesn’t grow too big as we approach the edges of
U , this integral will converge. For example, if we know that h is identically
zero outside some closed ball B(0, r) ⊂ U (i.e. it is a bump function) then the
integral certainly converges.

Now suppose we have a diffeomorphism F : V
∼−→ U where V is some other

open set in Rn. This is just a change of co-ordinates, so we can compute the
integral in the new co-ordinates if we wish. You should recall the ‘change-of-
variables’ formula:∫

U

h dx1...dxn =

∫
V

(h ◦ F ) |detDF | dy1...dyn (9.1)

The factor |detDF |, the absolute value of the determinant of the Jacobian
matrix of F , keeps track of how volume gets distorted when we change variables.

This is strikingly similar to the the way that n-forms behave. If we decide
that the symbols after the integral sign

∫
U

are really the n-form

α = h dx1 ∧ ... ∧ dxn ∈ Ωn(U)

then we have
F̃ ?α = (h ◦ F ) det(DF ) dy1 ∧ ... ∧ dyn

which is almost the same as the symbols after
∫
V

. This is very strong evidence
that the correct thing to integrate over U is not functions, but n-forms. Indeed,
all n-forms on U are of the form α = h dx1 ∧ ... ∧ dxn for some h ∈ C∞(U), so
we can simply define the integral of α to be:∫

U

α =

∫
U

h dx1...dxn

The formula (9.1) almost says that
∫
V
F ?α =

∫
U
α, i.e. the value of the integral

doesn’t change when you apply a diffeomorphism. The only problem is the oc-
curence of |det(DF )| instead of det(DF ). However, since F is a diffeomorphism,
det(DF ) can never be zero. So if we assume that U is connected, then det(DF )
must either be always positive or always negative, and we have that∫

V

F ?α =
(
sign of det(DF )

) ∫
U

α (9.2)

(if U is not connected then split it into its connected components, and this
equation holds for each component).

Now suppose we have an arbitrary n-dimensional manifold X, and an n-form
α ∈ Ωn(X). The goal of this section is to define the integral:∫

X

α ∈ R

97



If we pick a chart (U, f) on X, then we can at least try to define the integral of
α over the region U by writing α in co-ordinates and then integrating it over Ũ .
There are two problems with this definition: (1) the integral might not converge,
and (2) the value of the integral might not be co-ordinate independent. We will
solve (2) in Section 9.1 by introducing orientations.

Then in Section 9.2 we will explain how we define the integral of α over the
whole of X. The strategy is that we cover X by an atlas, then use a gadget
called a partition-of-unity to ‘cut up’ α into pieces, one for each chart in the
atlas, such that the integral of each piece is guaranteed to converge. Finally we
get the total integral by adding up the contribution from each piece.

9.1 Orientations

Let X be an n-dimensional manifold, and let α ∈ Ωn(X) be an n-form on X.
Let (U1, f1) and (U2, f2) be two charts on X, and for simplicity let’s assume
they have the same domain U = U1 = U2 and that U is connected. Writing α
in these two sets of co-ordinates gives n-forms α̃1 ∈ Ωn(Ũ1) and α̃2 ∈ Ωn(Ũ2),
and the transformation law for n-forms (8.27) says that

α̃2 = φ?12α̃1

where φ12 : Ũ2
∼−→ Ũ1 is the transition function. We would like to define

the integral of α over U by writing α in either chart, and then integrating it.
Unfortunately, even if this integral converges, it is not quite chart-independent.
Instead, we have that∫

Ũ2

α̃2 =
(
sign of det(Dφ12)

) ∫
Ũ1

α̃1

by (9.2). So we need to find a way to guarantee that det(Dφ12) is positive.

Definition 9.3. A volume form on an n-dimensional manifold X is an n-form
ω ∈ Ωn(X) such that ω is not zero at any point. If there exists a volume form
on X then we say that X is orientable.

Example 9.4. If U ⊂ Rn is an open set, then

ω0 = dx1 ∧ ... ∧ dxn ∈ Ωn(U)

is a volume form, so Rn is orientable. We’ll call ω0 the standard volume form
on U . Any n-form on U is of the form hω0 for some h ∈ C∞(U), and this is a
volume form iff h is never zero.

One feature of the previous example generalizes to any manifold: if we have
a volume form ω on X, then any n-form α ∈ Ωn(X) can be written as α = hω
for some h ∈ C∞(X), because the vector space ∧nT ?xX is 1-dimensional at
each point x ∈ X. If h is never zero then α will be another volume form, and
vice-versa.

Example 9.5. Let X = T 1. Recall from Example 8.7 that a one-form on
T 1 is the same thing as a periodic one-form on R, i.e. a one-form α̂ dx where
α̂ ∈ C∞(R) is a function such that α̂(x+1) = α̂(x) for all x. If we set α̂ to be the
constant function α̂ ≡ 1 then we get a volume form ω ∈ Ω1(T 1), corresponding
to the periodic 1-form dx ∈ Ω1(R). This shows that T 1 is orientable.
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The previous example can easily be generalized to show that the torus Tn is
orientable for any n. Constructing volume forms on the n-sphere Sn is a little
harder, and we’ll use the following general result:

Proposition 9.6. Let X be an orientable manfold, and let

Z = h−1(y) ⊂ X

be a level set of some function h ∈ C∞(X) at a regular value y ∈ R. Then Z is
orientable.

In particular if we set X = Rn+1 and Z = Sn then we see that Sn is
orientable, for any n.

Proof. Let dimX = n, and fix a point z ∈ Z, so the volume form ω at this point
gives us a non-zero element ω|z ∈ ∧nT ?zX. We saw in Lemma 5.13 that the
tangent space TzZ is the subspace of TzX given by the kernel of the linear map
Dh|z : TzX → TzR ∼= R. Let n ∈ TzX be any vector such that Dh|z(n) = 1.
Then we can define an element ω′|z ∈ ∧n−1T ?z Z by declaring that

ω′|z : (v1, ..., vn−1) 7→ ω|z(v1, ..., vn−1,n) ∈ R

for any vectors v1, ..., vn−1 ∈ TzZ. This map ω′|z is automatically (n−1)-linear
and antisymmetric, so it is indeed an element of ∧n−1T ?z Z. Futhermore we
claim that it’s independent of our choice of n. To see this, recall that ∧n−1T ?z Z
is only 1-dimensional, so if we pick a basis e1, ..., en−1 for TzZ then ω′|z is
determined by the single real number :

ω′|z(e1, ..., en−1) = ω|z(e1, ..., en−1,n) (9.7)

This number will not change if we change n by adding on any linear combination
of the ei’s, because ω|z is anti-symmetric and linear in each argument. However,
any vector in Dh|−1

z (1) must differ from n by some linear combination of the
ei’s, so ω′|z is indeed independent of our choice of n.

Also, the number (9.7) cannot be zero, because the vectors e1, ..., en−1,n
form a basis of TzX, and we know that ω|z is not zero. Therefore ω′|z is not
the zero element of ∧n−1T ?z Z.

So for every point z ∈ Z, we have constructed a non-zero element ω′|z ∈
∧n−1T ?z Z. If we can show that these elements vary smoothly, then we have
found a volume form ω′ on Z. So we need to look at this construction in
co-ordinates.

We can assume that Z is the level set of y = 0, since we can always replace
h by h− y. Then for any point z ∈ Z, we know that we can find a chart (U, f)
containing z such that when we write h in this chart it is just the last co-ordinate
h̃ = xn on Ũ . In such a chart, the submanifold Z becomes f(Z∩U) = Rn−1∩Ũ ,
and we may choose our vector n to be the tangent vector ∂

∂xn
at any point in

f(Z ∩ U). Now write the volume form ω in these co-ordinates, so it becomes

ω̃ = g̃ dx1 ∧ ... ∧ dxn

for some g̃ ∈ C∞(Ũ). It follows that ω′, in these co-ordinates, is given by

ω̃′ = g̃|{xn=0} dx1 ∧ ... ∧ dxn−1

which is indeed a smooth (n− 1)-form on f(Z ∩ U).
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With a little more work, this proposition can be generalised to level sets (at
regular values) of smooth functions h : X → Y , where Y is any other orientable
manifold. However, it is not true that any submanifold of an orientable manifold
is orientable.

In practice most manifolds that one cares about are orientable, but it is not
too hard to find non-orientable manifolds. We leave the next example as an
exercise:

Example 9.8. The Klein bottle K (see problem sheets) is a 2-dimensional
manifold which is not orientable.

The manifold RPn is orientable iff n is odd.

Now let X be an orientable manifold, and let ω ∈ Ωn(X) be a volume form.
Pick a chart (U, f) on X. In this chart ω becomes a volume form

ω̃ = hω0 ∈ Ωn(Ũ)

for some h ∈ C∞(Ũ), where ω0 is the standard volume form on Ũ . This function
h must be non-zero at all points.

Definition 9.9. Let ω ∈ Ωn(X) be a volume form on a manifold X. Let (U, f)
be a chart on X, and let ω0 be the standard volume form on Ũ . We say that
(U, f) is oriented (with respect to ω) if when we write ω in this chart it becomes

ω̃ = hω0

where the function h is always positive.

It’s not hard to find oriented charts. If U is connected, then h must be
either always positive or always negative. If it’s negative, just compose the
co-ordinates f with the reflection:

F : Rn → Rn

(x1, x2, ..., xn) 7→ (−x1, x2, ..., xn)

Since F ?ω0 = −ω0, the chart (U,F ◦ f) will be oriented. We could also replace
F here with any other diffeomorphism F satisfying detDF < 0 at all points.
If U is not connected, then we can split U into its connected components, and
perform this trick on each component where h is negative. So for any chart
(U, f), we can find an oriented chart which has the same domain U .

Now suppose that ω ∈ Ωn(X) is a volume form, and that g ∈ C∞(X) is a
real-valued function which is positive at all points. Then gω is another volume
form on X, and asking for a chart to be oriented with respect to gω is exactly
the same condition as asking for it to be oriented with respect to ω. This leads
us to the following definition:

Definition 9.10. An orientation on a manifold X is an equivalence class of
volume forms on X, where we declare that two volume forms ω1 and ω2 are
equivalent iff ω2 = gω1 for some g ∈ C∞(X) which is positive everywhere. If
we’ve fixed an orientation on X we say that X is oriented.

Obviously, we can find an orientation for X iff X is orientable. If we fix an
orientation [ω] on X then that determines which charts are oriented, it is not
necessary to choose a specific volume form in the equivalence class [ω].

For our purposes, the reason for introducing oriented manifolds, and oriented
charts, is the following easy observation:
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Lemma 9.11. Let X be an oriented manifold. Let (U1, f1) and (U2, f2) be two
oriented charts, and let φ12 be the transition function between them. Then for
any point x̃ ∈ f2(U1 ∩ U2) we have:

detDφ12|x̃ > 0

Proof. Pick any volume form ω representing the given equivalence class. In our
two charts, ω becomes

ω̃1 = h1ω0 ∈ Ωn(Ũ1) and ω̃2 = h2ω0 ∈ Ωn(Ũ2)

where both h1 and h2 are positive everywhere since both charts are oriented.
For a point x ∈ U1 ∩ U2 we have

h2|f2(x) = det
(
Dφ12|f2(x)

)
h1|f1(x)

by the transformation law for n-forms (8.27). Hence det
(
Dφ12|f2(x)

)
> 0.

This solves part of our problem of defining integration on manifolds. If we
stick to oriented manifolds, and oriented charts, then the determinant of the
derivative of the transition function will always be positive. Then the integral
of an n-form over a chart U (if it converges) will be independent of the choice
of co-ordinates.

9.2 Partitions-of-unity and integration

For any (oriented) manifold X, and any n-form α on X, we would like to be
able to define the integral ∫

X

α

as some real number. However this is not going to work in general, because
integrals do not always converge. For example if we take X = R, and α ∈ Ω1(R)
to be the constant one-form dx, then we are trying to evaluate∫ ∞

−∞
1 dx

which doesn’t converge to a finite answer. So we have to put some restrictions
on either X or α.

To start with, we’ll let X be any oriented manifold, but we’ll only consider
a restricted class of n-forms.

Definition 9.12. Let α ∈ Ωp(X) for some p. We’ll call α a bump form if
there exists some chart (U, f) on X, and some compact subset W ⊂ U , such
that α is identically zero outside of W .

Warning: this is not standard terminology, but it will be a convenient defi-
nition for us.

If α ∈ Ωn(X) is a bump form, then we can define the integral
∫
X
α ∈ R in

the following way. By definition, there is some chart (U, f) such that α vanishes
outside of a compact subset W ⊂ U . We can also assume that (U, f) is an
oriented chart (if not then compose with it with a reflection). Now look at the
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n-form α̃ ∈ Ωn(Ũ) that we get by writing α in this chart. The subset f(W ) ⊂ Ũ
is compact, so it’s contained in some closed ball B(0, R) ⊂ Ũ , so α̃ is identically
zero outside this ball. Therefore we can define∫

X

α =

∫
Ũ

α̃ ∈ R

since this integral converges. Now let’s prove that this definition is independent
of our choice of chart.

Proposition 9.13. Let (U1, f1) be an oriented chart such that α vanishes out-
side of some compact subset W1 ⊂ U1. Let (U2, f2) be another oriented chart
such that α vanishes outside of some compact subset W2 ⊂ U2. Let α̃1 ∈ Ωn(Ũ1)
and α̃2 ∈ Ωn(Ũ2) be the n-forms that we get by writing α in the two charts. Then
we have: ∫

Ũ1

α̃1 =

∫
Ũ2

α̃2

Proof. Let U = U1 ∩ U2, and W = W1 ∩W2. Then W is a compact subset of
U , and α vanishes outside of W . Consequently∫

Ũ1

α̃1 =

∫
f1(U)

α̃1 and

∫
Ũ2

α̃2 =

∫
f2(U)

α̃2

since α̃1 vanishes outside f1(U) and α̃2 vanishes outside f2(U), and all these
integrals converge. The transition function is a diffeomorphism

φ12 : f2(U)
∼−→ f1(U)

and α̃2 = φ∗12α̃1, so the formula (9.2) shows that∫
f1(U)

α̃1 =

∫
f2(U)

α̃2

since both charts are oriented.

So for any bump form α ∈ Ωn(X) we have a well-defined integral
∫
X
α ∈ R.

We can calculate this integral using any chart that contains the locus where α
is non-zero.

We now want to consider integrating arbitrary n-forms. This means that
we have to put some restriction on X, and the correct restriction is to insist
that X itself is compact. On a compact manifold, there is a way to ‘chop-up’
an arbitrary n-form into a finite number of bump forms. Then we can then
integrate each piece, and add the answers together. The ‘chopping-up’ step is
done with the following gadget:

Definition 9.14. Let X be a manifold. A partition-of-unity on X is a set of
functions ϕ• = {ϕi, i ∈ I} ⊂ C∞(X) (indexed by some set I) with the following
properties:

(i) For each i ∈ I the function ϕi ∈ Ω0(X) is a bump form, so there exists a
chart (Ui, fi) and a compact subset Wi ⊂ Ui such that ϕi vanishes outside
of Wi.
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(ii) At any point x ∈ X, only finitely-many of the ϕi have ϕi(x) 6= 0.

(iii) The sum ∑
i∈I

ϕi

is the constant function with value 1 ∈ R.

Note that property (ii) implies that the sum in (iii) is finite at every point,
so there are no convergence issues.

Suppose that we choose a specific chart (Ui, fi) for each ϕi, satisfying the
condition (i). Then this set of charts gives an atlas A = {(Ui, fi), i ∈ I} for
X, because at any point x ∈ X at least one of the ϕi’s must be non-zero, so
the corresponding Ui contains x. We say that ϕ• is subordinate to the atlas
A. Sometimes we want to specify the atlas A in advance, and then construct a
partition-of-unity subordinate to A.

It’s possible to prove that a partition-of-unity exists on any manifold X, us-
ing the technical assumption that the toplogical space underlying X is second-
countable. In fact, given any atlas A, there exists a partition-of-unity subordi-
nate to A. We are not going to prove these statements, but we will prove the
following easy special case:

Proposition 9.15. If X is compact then there exists a partition-of-unity

ϕ• = {ϕi, i ∈ I} ⊂ C∞(X)

on X, where the set I is finite.

It’s fairly easy to show that a finite partition-of-unity can only exist if X is
compact, so the proposition is really ‘if-and-only-if’.

Proof. For any point x ∈ X, we can find a bump function ψx which is constantly
equal to 1 on some open neighbourhood Vx of x, never negative, and vanishes
outside of some compact set which is contained within a chart. Choose this data
of ψx and Vx and for each point x. The open sets {Vx, x ∈ X} form an open
cover of X, so since X is compact there is some finite subcover {Vx1 , ..., Vxr}.
Let ψxr , ..., ψxr be the corresponding set of bump functions. Then the sum
ψx1

+ ... + ψxr is strictly positive at all points of X, since no term is negative
and at all points at least one term is equal to 1. Hence we can define

ϕi =
ψxi

ψx1
+ ...+ ψxr

∈ C∞(X)

and then ϕ1, ..., ϕr is a partition-of-unity.

Partitions-of-unity can be used for many things, one of which is defining
integration. Suppose X is oriented and compact, and we have found a finite
partition-of-unity ϕ• = {ϕ1, ..., ϕr}. Then if α ∈ Ωn(X) is any n-form, we have
that:

α = ϕ1α+ ...+ ϕrα

Each ϕiα is a bump form, so we have a well-defined integral
∫
X
ϕiα ∈ R, as we

saw before. So we can define the ‘integral of α over X, using ϕ•’, as:∫ ϕ•

X

α =

r∑
i=1

(∫
X

ϕiα

)
∈ R
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We just need to check that this definition is independent of which partition-of-
unity we chose.

Proposition 9.16. Let X be a compact oriented manifold, and let ϕ• = {ϕ1, ..., ϕr}
and ϕ̂• = {ϕ̂1, ..., ϕ̂s} be two finite partitions-of-unity on X. Then for any n-
form α ∈ Ωn(X), we have that:∫ ϕ•

X

α =

∫ ϕ̂•

X

α

Proof. First we claim that if β is a bump-form, and ϕ• is a finite partition-of-
unity, then: ∫ ϕ•

X

β =

∫
X

β

The proposition follows immediately from this claim, because if α is any n-form,
and ϕ•, ϕ̂• are two finite partitions-of-unity, then:∫ ϕ•

X

α =
∑
i

(∫
X

ϕiα

)
=
∑
i

(∫ ϕ̂•

X

ϕiα

)
=
∑
i,j

(∫
X

ϕ̂jϕiα

)
=

∫ ϕ̂•

X

α

So, suppose β is a bump-form, and let (U, f) be an oriented chart such that β
vanishes outside of a compact subset W ⊂ U . Now let ϕ• be any a partition-
of-unity. Each bump-form ϕiβ also vanishes outside of W , so we may evaluate
each

∫
X
ϕiβ using the chart (U, f). Writing everything in these co-ordinates,

we have that
β̃ dx1 ∧ ... ∧ dxn =

∑
i

ϕ̃iβ̃ dx1 ∧ ... ∧ dxn

and since integrating over Ũ is a linear operation, we see that
∫
X
β =

∑
i

∫
X
ϕiβ.

So given a compact, oriented manifold X, and an n-form α ∈ Ωn(X), we
have a well-defined definition of the integral

∫
X
α, namely pick a finite partition-

of-unity ϕ•, and define: ∫
X

α =

∫ ϕ•

X

α

This doesn’t depend on our choice of partition-of-unity. It defines an operation∫
X

: Ωn(X)→ R

α 7→
∫
X

α

and it is easy to check that this is linear in α.

Example 9.17. Let X = T 1, and let’s use our usual atlas {(U1, f1), (U2, f2)}
(as in Example 2.11). We observed in Example 9.5 that there is a volume form
ω ∈ Ω1(T 1) which corresponds to the periodic one-form dx ∈ Ω1(R), so if we
write ω in either chart we just get dx. Any other one-form α on T 1 can be
written as α = hω for some h ∈ C∞(T 1).

104



Let’s fix the orientation [ω] on T 1, this means that both of our charts are
oriented. Now pick a one-form hω ∈ Ω1(T 1), and let’s evaluate the integral:∫

T 1

hω

First we need a partition-of-unity. Let ϕ̂1 ∈ C∞
(
(0, 1)

)
be some function which

is never negative, constantly equal to 1 in some interval containing 1
2 , and

vanishes outside some larger interval. Now extend ϕ̂1 to a periodic function
on the whole of R by setting ϕ̂1(0) = 0 and insisting that ϕ̂1(x) = ϕ̂1(x + 1)
for all x ∈ R. This defines a function ϕ1 ∈ C∞(T 1), which vanishes outside
a compact subset of U1. If we let ϕ̂2 = 1 − ϕ̂1 ∈ C∞(R), then this defines a
function ϕ2 ∈ C∞(T 1) which vanishes outside a compact subset of U2, and the
pair (ϕ1, ϕ2) is a partition-of-unity on T 1. Then our integral is the sum of two
terms: ∫

T 1

hω =

∫
T1

ϕ1hω +

∫
T 1

ϕ2hω

Lift the function h ∈ C∞(T 1) to a periodic function ĥ ∈ C∞(R), then the

expression for h in either chart is just given by restricting ĥ to the corresponding
interval. Now let’s evaluate the first term in our integral, which we can do in
the chart (U1, f1). It gives the answer:∫

T 1

ϕ1hω =

∫ 1

0

ϕ̂1(x)ĥ(x) dx

The second term can be evaluated in (U2, f2), and gives∫
T 1

ϕ2hω =

∫ 1
2

− 1
2

ϕ̂2(x)ĥ(x) dx =

∫ 1

0

ϕ̂2(x)ĥ(x) dx

since ĥ and ϕ̂2 are periodic. So adding the two terms together gives:∫
T 1

hω =

∫ 1

0

(
ϕ̂1(x) + ϕ̂2(x)

)
ĥ(x) dx =

∫ 1

0

ĥ(x) dx

(this is probably what you would have guessed initially, but this shows that
our complicated definition has reduced to a sensible answer in this case). In
particular, we have that: ∫

T 1

ω = 1

There’s an easy general observation we can make here: if X is any compact
manifold and ω ∈ Ωn(X) is a volume form, then if we use the orientation [ω] on
X we must have ∫

X

ω > 0

since the integral will be a sum of strictly positive terms. This means that
integration over X defines a surjective linear map∫

X

: Ωn(X)→ R

since if multiply ω by a scalar λ ∈ R then we can arrange
∫
X
λω to take any

value we wish.
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9.3 Stokes’ Theorem

Suppose we have a function h ∈ C∞(R) that vanishes outside of some closed
interval [−r, r] ⊂ R. Then the one-form

dh =
∂h

∂x
dx

also vanishes outside of this interval, so the integral
∫
R dh certainly converges,

and in fact
∫
R dh =

∫ r
−r dh. So by the fundamental theorem of calculus, we have∫
R
dh =

∫ r

−r

∂h

∂x
dx = h(r)− h(−r) = 0

since h(r) = h(−r) = 0.
Let’s generalise this observation to higher dimensions. If we work on Rn,

then the objects that we can integrate are n-forms, so we must replace h by an
(n− 1)-form. For example, let’s work on R3, and consider a 2-form

α = α1 dy ∧ dz

which only has one non-zero component. Then:

dα =
∂α1

∂x
dx ∧ dy ∧ dz

Suppose that α vanishes outside some cube, i.e. the function α1 ∈ C∞(R3) is
zero unless x, y, z ∈ [−r, r]. Then we have that∫

R3

dα =

∫ r

−r

(∫ r

−r

(∫ r

−r

∂α1

∂x
dx

)
dy

)
dz

=

∫ r

−r

(∫ r

−r

(
α1(r, y, z)− α1(−r, y, z)

)
dy

)
dz

= 0

since α1(r, y, z) = α1(−r, y, z) = 0 for any values of y and z.
If α has more than one component then it’s still true that

∫
R3 dα = 0, since

we can evaluate each component individually (both d and
∫

are linear) and each
piece will be zero. We can also perform this argument in exactly the same way
in higher dimensions:

Lemma 9.18. Let U ⊂ Rn be an open set, and let α ∈ Ωn−1(U) be an (n− 1)-
form that vanishes outside some compact subset W ⊂ U . Then:∫

U

dα = 0

Proof. By linearity it’s enough to consider the case when α has only one non-
vanishing component, and without loss of generality we can assume that

α = α1 dx2 ∧ ... ∧ dxn

for some α1 ∈ C∞(U) (which vanishes outside W ). We can extend α to a
smooth (n− 1)-form on the whole of Rn by setting it to be zero on Rn \U , and
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if we pick a large enough r then W will be contained in the n-dimensional cube
[−r, r]×n. Then we have:∫

U

dα =

∫
[−r,r]×n

∂α1

∂x1
dx1dx2...dxn

=

∫
[−r,r]×(n−1)

(
α1|{x1=r} − α1|{x1=−r}

)
dx2....dxn

= 0

since α ≡ 0 on the faces {x1 = r} and {x1 = −r}.

Futhermore, this statement generalizes very easily to more interesting man-
ifolds.

Theorem 9.19 (Stokes’ Theorem). Let X be a compact oriented manifold of
dimension n. Then for any α ∈ Ωn−1(X) we have:∫

X

dα = 0

In fact this is not the full version of Stokes’ Theorem, there is a more inter-
esting version that uses the full power of the fundamental theorem of calculus.
The stronger version requires the concept of a manifold-with-boundary, and is
explained in Appendix F.

Proof. Choose a finite partition of unity ϕ• on X, so α = (ϕ1 + ... + ϕr)α
and dα = d(ϕ1α) + ... + d(ϕrα). For each i we know that ϕiα is a bump form
vanishing outside some compact set Wi, hence d(ϕiα) is also a bump form, since
it also vanishes outside Wi. Also, we can see that∫

X

d(ϕiα) = 0

by passing to some oriented chart containing Wi and applying Lemma 9.18.
Since integrating over X is linear, it follows that

∫
X
dα = 0.

Recall that the n-th de Rham cohomology group of X is defined to be the
quotient vector space

Hn
dR(X) = Ωn(X) / {exact (n− 1)-forms}

(since all n-forms are automatically closed). Stokes’ Theorem says precisely
that integration gives a well-defined map:∫

X

: Hn
dR(X)→ R

Example 9.20. LetX = T 1, and let α ∈ Ω1(T 1) be the one-form corresponding
to a periodic one-form α̂ dx ∈ Ω1(R). We saw in Example 9.17 that (after fixing
the orientation [ω] on T 1) the integral of α is given by:∫

T 1

α =

∫ 1

0

α̂(x) dx
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If α = dh for some h ∈ C∞(T 1), i.e. if α is an exact one-form, then Stokes’
Theorem says that

∫
T 1 α = 0. This is precisely the observation we made in

Example 8.7, it says that if α̂ = dĥ
dx for a periodic function ĥ ∈ C∞(R), then:∫ 1

0

α̂ dx = ĥ(1)− ĥ(0) = 0

For this example, it’s easy to show that the converse to Stokes’ Theorem is

also true. If
∫ 1

0
α̂(x) dx = 0, then the function

ĥ : R→ R

x 7→
∫ x

0

α̂(y) dy

will satisfy ĥ(x) = ĥ(x + 1) for all x ∈ R. Hence it defines a corresponding
function h ∈ C∞(T 1), and dh = α. So on the circle T 1, we have shown that
the integral of a one-form is zero if and only if the one-form is exact. In other
words, integration gives an isomorphism:∫

T 1

: H1
dR(T 1)

∼−→ R

The observation from the previous example is actually a general phenomenon.
If X is a connected compact oriented n-dimensional manifold, and α ∈ Ωn(X)
is an n-form, then ∫

X

α = 0

if-and-only-if there exists some β ∈ Ωn−1(X) such that α = dβ. Hence integra-
tion gives an isomorphism: ∫

X

: Hn
dR(X)

∼−→ R

This result is quite hard to prove, it’s a first glimse of an extremely deep and
important fact about manifolds called Poincaré duality.
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A Topological spaces

In this section we provide a very brief revision of the basics of topological spaces.
If X is a set we let PX denote the power set of X, i.e. the set of all subsets

of X.

Definition A.1. Let X be a set. A topology on X is a collection

T ⊂ PX

of subsets of X, satisfying the list of axioms below. We refer to elements of T
as open sets. The axioms are:

(i) The empty subset φ is open, and the whole of X is open.

(ii) The intersection of two open sets is open.

(iii) Given any collection of open sets, their union is also open.

Axiom (ii) implies that the intersection of any finite collection of open sets is
open. Axiom (iii) applies to any collection of open sets, including infinite ones.
If we have chosen a topology on X, then we call X a topological space.

A subset V of a topological space X is called closed iff its complement
V c = X \ V is open. Note that most subsets of X are neither open nor closed.

Example A.2. Let X = Rn, equipped with the usual (Euclidean) norm. For
a point x ∈ Rn, and a real number r ∈ R≥0, the open ball around x of radius r
is the set:

B(x, r) = {y ∈ Rn; |y − x| < r}
We declare that a subset U ⊂ Rn is open iff for any point x ∈ U there exists
some ε > 0 such that:

B(x, ε) ⊂ U
Equivalently, we can say that a subset U ⊂ X is open iff U can be written as
a union of some collection of open balls. It is easy to prove that this defines a
topology on Rn.

Definition A.3. Let X and Y be topological spaces, and let f be a function:

f : X → Y

We say that f is continuous iff whenever U ⊂ Y is an open set then its pre-
image

f−1(U) ⊂ X
is also open. Equivalently, we can require that the pre-image of every closed set
is closed.

Its easy to show that the composition of two continuous functions is contin-
uous.

Definition A.4. If f : X → Y is a continuous function between two topological
spaces then we say that f is a homeomorphism iff f is a bijection and the
inverse function

f−1 : Y → X

is also continuous. If there exists a homeomorphism between X and Y then we
say that X and Y are homeomorphic.
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Definition A.5. Let X be a topological space, and let Z ⊂ X be any subset.
We define the subspace topology on Z by declaring that a subset U ⊂ Z is
open iff there exists some open set Ũ ⊂ X such that:

U = Z ∩ Ũ

It’s easy to prove that this really does define a topology on Z, and that the
inclusion map Z ↪→ X is continuous. It follows that if f : X → Y is continuous
then the restriction f |Z : Z → Y is also continuous. It’s also easy to prove that
a function g : Y → Z is continuous iff g is continuous when viewed as a function
g : Y → X.

Definition A.6. Let X be a topological space, let Y be a set, and let

q : X → Y

be a surjective function. We define the quotient topology on Y by declaring
that U ⊂ Y is open iff q−1(U) is open in X.

It’s easy to check that this really is a topology on Y , and that it makes q
continuous.

Let X and Y be two topological spaces. We can put a topology on their
cross-product

X × Y = {(x, y); x ∈ X, y ∈ Y }

by declaring that if U1 is an open set in X and U2 is an open set in Y then

U1 × U2 ⊂ X × Y

is an open set, and further declaring that any union of sets of this form is also an
open set. It’s easy to check that this defines a topology, and that the projection
map from X × Y to either X or Y is continuous.

We can also put a topology on the disjoint union

X t Y

by declaring that a subset U ⊂ X tY is open iff U ∩X is open in X and U ∩Y
is open in Y (again it’s easy to check that this is a topology). This means that
both X and Y are subspaces of X t Y .

Definition A.7. A topological space X is called compact iff, whenever we
have a collection of open sets {Ui, i ∈ I} (indexed by some set I) such that⋃

i∈I
Ui = X

then it is possible to find a finite subset J ⊂ I such that we still have:⋃
j∈J

Uj = X

A collection {Ui, i ∈ I} like this is called an open cover of X, and the sub-
collection {Uj , j ∈ J} is called a finite sub-cover. A subset Z ⊂ X is called
compact iff Z is compact in the subspace topology.
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Example A.8. If X = Rn (with the usual topology), then a subset Z ⊂ Rn is
compact iff Z is both closed and bounded, i.e.

Z ⊂ B(0, R)

for some large-enough R. We won’t give a proof of this fact, to find one consult
any first course on topological spaces.

Definition A.9. A topological space X is called Hausdorff if for any two
distinct points x, y ∈ X we can find open sets U and V with x ∈ U and y ∈ V
and U ∩ V = φ.

So x and y can be ‘housed-off’ from each other by these open neighbour-
hoods.

Example A.10. The space Rn is Hausdorff. Take x and y distinct points in
Rn, and let d = |x − y|. Then the open balls B(x, d/2) and B(y, d/2) don’t
intersect.

It’s easy to show that any subspace of a Hausdorff space is also Hausdorff.

Example A.11. Here is a rather strange example of a space that would be
1-dimensional topological manifold, except that it is not Hausdorff.

Take the disjoint union R t R of two copies of R, and for any x ∈ R let’s
write x1 or x2 for the corresponding points in either component. Let X be the
quotient

X = (R t R) / (x1 ∼ x2 for x 6= 0)

(with the quotient topology). Then X looks a lot like R, but the origin has been
replaced with two points 01 and 02. If we let U1 and U2 be the images in X
of the two copies of R, then it’s easy to show that they are the domains of two
co-ordinate charts, so this is an atlas (it’s even a smooth atlas).

However, X is not Hausdorff. If U is any open set containing the first ‘origin’
01, and V is any open set containing the second ‘origin’ 02, then U and V must
have a non-empty intersection.

Definition A.12. A topological space X is called second-countable if there is
a countable base for the topology T on X, i.e. there is some countable collection
of open sets B ⊂ T such that any set in T can be written as a union of sets
from B.

Example A.13. The space Rn is second-countable. The most obvious base
for the topology on Rn is the set of all open balls (this is how we defined the
topology!), and this is an uncountable set. However, there is a countable base,
given by the set

B =
{
B
(
(x1, ..., xn), r

)
, x1, ..., xn, r ∈ Q

}
of ‘rational balls’. To see that B is a base, just observe that any open ball
B(x, r) can be written as the union of all rational balls that are contained in
B(x, r).

It’s easy to show that any subspace of a second-countable space is also
second-countable.
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Example A.14. Take a copy of Rn for every real number r ∈ R, and let X be
the disjoint union:

X =
⋃
r∈R

Rn

Then X would be a n-dimensional topological manifold (or smooth manifold),
except that it is not second-countable.
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B Dual vector spaces

In this section we provide a brief revision of dual vector spaces and dual linear
maps.

Let V be any vector space, of dimension n. The dual vector space to V is
the space

V ? = Hom(V,R)

of all linear maps from V to R. If we pick a basis {e1, ..., en} for V , then V ? has
a corresponding dual basis {ε1, ..., εn}, where εi ∈ V ? is the linear map defined
by:

εi : V → R

ej 7→
{

1, j = i
0, i 6= j

In particular V ∗ also has dimension n.
If V = Rn then we can identify V ? with Rn; if we think of V as column

vectors then elements of V ? are row vectors. Under this identification the stan-
dard basis becomes its own dual basis, and the operation of evaluating a map
in (Rn)? on a vector in Rn becomes the dot product.

If V is not Rn then there is no canonical isomorphism between V and V ? -
they are isomorphic, but to get an isomorphism we have to choose a basis for
V and then identify both V and V ? with Rn. However, there is a canonical
isomorphism between V and (V ?)?. It takes a vector v ∈ V to the linear map:

evv : V ? → R
u 7→ u(v)

So V is the dual space to V ?.
Now let W be a second vector space (of dimension m) and let

F : V →W

be a linear map. There is a corresponding dual linear map

F ? : W ? → V ?

which sends a vector u ∈W ? to a vector F ?(u) ∈ V ? defined by:

F ?(u) : V → R
v 7→ u(F (v))

If we compose two linear maps F and G then the dual of the composed map is:

(G ◦ F )? = F ? ◦G?

It follows easily from this that F is an isomorphism if and only if F ? is an
isomorphism. If we pick a basis for both V and W then the linear map F can
be expressed as an m-by-n matrix:

F̃ : Rn → Rm
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The dual map F ? can be an expressed as an n-by-m matrix, using the corre-
sponding dual bases of V ? and W ?, and it’s easy to calculate that it becomes
the transpose matrix:

F̃> : Rm → Rn

This is consistent with the fact that (MN)> = N>M>.
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C Bump functions and the Hausdorff condition

In this short section we show why the Hausdorff condition is necessary for con-
structing bump functions. We start with a basic fact about Hausdorff spaces:

Lemma C.1. If X is Hausdorff, and Z ⊂ X is compact, then Z is closed in
X.

Proof. Fix a point y ∈ X \ Z. For any point z ∈ Z we can find an open set Uz
containing z and an open set Vz containing y such that Uz ∩Vz = φ. The union
of all the Uz’s is an open cover of Z, so it contains a finite subcover {Uz1 , ..., Uzt}.
The intersection Vz1 ∩ ...∩Vzt of the corresponding open neighbourhoods of y is
an open neighbourhood of y, and it does not intersect any Uzi , so it is contained
in X \ Z. Therefore X \ Z is open.

Now we recall the idea of bump functions, discussed in Section 7.1. Fix r
and r′ with 0 < r < r′.We observed that it is possible to find a smooth function
ψ ∈ C∞(Rn) such that ψ is constantly equal to 1 inside the ball B(0, r) and
constantly equal to 0 outside the larger ball B(0, r′).

Now let X be a manifold, and (U, f) a chart on X, such that the codomain
Ũ contains the closed ball B(0, r′). We extend ψ to a function on the whole of
X by defining:

ψ̂(y) =

{
(ψ ◦ f)(y), for y ∈ U

0, for y /∈ U

Lemma C.2. This function ψ̂ is smooth.

Proof. The closed ball B(0, r′) is a compact subset of Ũ , so W = f−1(B(0, r′))
is a compact subset of X, contained in U . Since X is Hausdorff, Lemma C.1
says that W is closed in X. Then ψ̂ is smooth inside the open set U , and it
is certainly smooth inside the open set X \W since it’s constant in this locus.

Therefore ψ̂ is smooth.

To understand why the Hausdorff condition was necessary here, consider the
following:

Example C.3. Let X be the ‘line with two origins’ from Example A.11. Let
ψ be a bump function on R which is constantly equal to 1 in some open inteval
around 0, and constantly equal to 0 outside some larger open interval. View
this is a bump function in the chart U1, and extend it to a function ψ̂ on the
whole of X as we did above. Notice that X \ U1 is a single point, the other

‘origin’ 02. If we restrict ψ̂ to the chart U2
∼= R we get a function which is equal

to 0 at the origin, but constantly equal to 1 inside the set (−r, 0) ∪ (0, r) for

some r > 0. So ψ̂ is not even continuous.
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D Derivations at a point

In this section we prove Proposition 7.12, which says that, given a point x ∈ X
in a manifold, a linear map

d : C∞(X)→ R

is a derivation at x if and only if d vanishes on the subspace Rx(X) of functions
which have rank zero at x.

As usual we start with the easy case when X is an open subset in Rn. Fix
a point x ∈ X.

Lemma D.1. If d is a derivation at x and h ∈ C∞(X) has rank zero at x then
d(h) = 0.

Proof. Recall that d ∈ Derx(X) obeys the product rule:

d(h1h2) = h1(x)d(h2) + h2(x)d(h1) (D.2)

Firstly we show that d vanishes on constant functions. Let 1 ∈ C∞(X) denote
the constant function with the value 1 ∈ R. Let h ∈ C∞(X) be any function
such that h(x) 6= 0, then the product rule implies that

d(h) = d(h.1) = h(x)d(1) + d(h)

and hence d(1) = 0. Since d is linear it must send any constant function to zero.
Now let h ∈ C∞(X) be any function. Let x1, .., xn be the standard co-

ordinate functions on X, and let (a1, ..., an) ∈ Rn be the co-ordinates of our
fixed point x. Let the Jacobian of h at x be Dh|x = (v1, ..., vn). Then Taylor’s
theorem says that we can write

h = h(x) +

n∑
i=1

(xi − ai)
(
vi +Hi)

where H1, ...,Hn ∈ C∞(X) are functions such that Hi(x) = 0 for each i (this
is the ‘second-order’ version of Taylor’s theorem, the full theorem says that we
can do something similar with higher-order expansions). In particular if h has
rank zero at x then each vi is zero, and:

h = h(x) +

n∑
i=1

(xi − ai)Hi

In this expression h(x) is a constant, which we could view as a constant function
in C∞(X), and for each i the expression (xi − ai) is also a function in C∞(X)
and it obeys (xi−ai)|x = 0. Then the product rule, and the fact that d vanishes
on constant functions, implies that d(h) = 0.

Now we want to prove a similar result on a general manifold X. Fix a point
x ∈ X. Obviously we’d like to take a chart (U, f) around x, and reduce the case
of open subsets in Rn. However, there is a subtlety here.
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Consider the linear map:

C∞(X)→ C∞(U)

h 7→ h|U

This respects multiplication of functions i.e. it’s a map of rings (or R-algebras),
and it also respects the map ‘evaluate at the point x’. So if we have a linear
map d′ : C∞(U) → R which is a derivation at x then we can compose it with
the restriction map, and we’ll get an operator in Derx(X). This provides us
with a map:

Derx(U)→ Derx(X)

We want to show this map is an isomorphism, but it’s not immediately obvious
how to invert it, because not every function in C∞(U) is the restriction of a
function in C∞(X). Here is the first step:

Lemma D.3. Let d be a derivation at x. If h ∈ C∞(X) is identically zero on
some open neighbourhood of x then d(h) = 0.

Proof. Suppose that h is identically zero on a neighbourhood U of x. Let
ψ ∈ C∞(X) be a bump function such that we have neighbourhoods

x ∈ V ⊂W ⊂ U

with ψ|V ≡ 1 and ψ|X\W ≡ 0. Then (1 − ψ)h = h, so d(h) = d((1 − ψ)h) = 0
by the product rule.

So if d ∈ Derx(X) then the value of d(h) doesn’t really depend on the whole
function h, it only depends on the behaviour of h near the point x. This suggests
we should consider the following subset of C∞(X):

{h ∈ C∞(X) ; ∃ an open neighbourhood U of x with h|U ≡ 0} (D.4)

It’s easy to see that this is a subspace of C∞(X), so we may form the quotient
space, which we’ll denote by:

Ĉ∞x (X)

Elements of Ĉ∞x (X) are called germs of smooth functions at x. A germ is an
equivalence class of functions, where we declare that two functions are equivalent
if they agree in some open neighbourhood of x. The lemma we just proved says
that any d ∈ Derx(X) induces a linear map:

d̂ : Ĉ∞x (X)→ R

Now notice that if [h] ∈ Ĉ∞x (X) is a germ, we can evaluate [h] at the point x
to get a real number h(x) ∈ R. This is well-defined, it doesn’t depend on which
representative of the germ we choose (but we cannot evaluate [h] at any point

other than x). Also notice that we have a well-defined multiplication in Ĉ∞x (X)

([h1], [h2]) 7→ [h1h2]

because if h1 vanishes in a neighbourhood of x, and h2 is any function, then
h1h2 vanishes in a neighbourhood of x (i.e. the subspace (D.4) is an ideal in
C∞(X)).
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This means that it if we have a linear map from Ĉ∞x (X) to R then it makes
sense to ask if it obeys the product rule (D.2). If we consider such a map
d̂ induced from a d ∈ Derx(X) then it will obey this rule; conversely if we

take any linear map from Ĉ∞x (X) to R which obeys the product rule then by
composing it with the quotient map

C∞(X)→ Ĉ∞x (X)

we will get a derivation at x. So derivations at x are precisely linear maps from
Ĉ∞x (X) to R which obey the product rule.

Now we show that the space of germs doesn’t change if we restrict from X
to an open neighbourhood of x.

Lemma D.5. If U ⊂ X is an open neighbourhood of x then we have a linear
isomorphism

Ĉ∞x (X)
∼−→ Ĉ∞x (U)

given by sending [h] to [h|U ].

Proof. Firstly note that if h ∈ C∞(X) vanishes in an open neighbourhood of x
then so does the function h|U ∈ C∞(U), so this map is well defined. Now let’s
find an inverse map. Choose a bump function ψ ∈ C∞(X) which is constant
with value 1 on some open neighourhood V of x, and vanishes outside some
larger closed neighbourhood W ⊂ U . If g ∈ C∞(U), then we can extend g to a
function on the whole of X by defining:

ĝ =

{
gψ inside U
0 outside U

Then ĝ is smooth, since it’s smooth in the open sets U and X \W . Then we
have a linear map:

C∞(U)→ C∞(X)

g 7→ ĝ

Furthermore if g vanishes on some neighbourhood of x then so does ĝ, so we get
an induced map:

Ĉ∞x (U)→ Ĉ∞x (X)

If h is a function on X then (̂h|U ) agrees with h on the neighbourhood W . Also
if g is a function on U then (ĝ)|U agrees with g on the neighbourhood W . This
proves that the function [g] 7→ [ĝ] is the inverse to the function [h] 7→ [h|U ].

Corollary D.6. We have an isomorphism

Derx(U)
∼−→ Derx(X)

which sends d′ ∈ Derx(U) to the operator d : h 7→ d′(h|U ).

Now we can prove the ‘only if’ direction in Proposition 7.12.

Proposition D.7. Let x ∈ X be a point in a manifold, and let d be a derivation
at x. If h ∈ C∞(X) has rank zero at x then d(h) = 0.

Proof. Pick any chart (U, f) around x. Then by Corollary D.6 d determines an
operator d′ ∈ Derx(U), with d(h) = d′(h|U ). The co-ordinate function f gives
an isomorphism between C∞(U) and C∞(Ũ), which induces an isomorphism
between Derx(U) and Derf(x)(Ũ). The function h has rank zero at x, so the

function h̃ = h◦f−1 ∈ C∞(Ũ) has rank zero at f(x). Now use Lemma D.1.

118



E Vector bundles

In Section 6 we introduced the tangent bundle TX to a manifold X, which is
defined to be the set:

TX =
⋃
x∈X

TxX

It comes with a surjection π : TX → X which sends a tangent vector v ∈ TxX
to the point x ∈ X.

Proposition E.1. The tangent bundle TX naturally has the structure of a
manifold, with dimension 2(dimX).

Proof. We’ll define our manifold structure by writing down a pseudo-atlas on
TX, and invoking Proposition 2.26 and Corollary 2.28. In fact we’ve done most
of the work already, in Section 6.1. Let (U, f) be any chart on X. We saw that
this induces a bijection:

F : TU = π−1(U)
∼−→ Ũ × Rn

(x, v) 7→
(
f(x),∆f (v)

)
The codomain here is an open subset in R2n, so this is a pseudo-chart on TX.
If we do this for all charts on X then the corresponding set of pseudo-charts
obviously cover TX, so they form a pseudo-atlas.

Now we must check conditions 1 and 2 from Proposition 2.26. Let (U1, f1)
and (U2, f2) be two charts on X, and let U = U1 ∩U2 denote their intersection.
Then the intersection of the pseudo-charts TU1 and TU2 is exactly TU , and

F1(TU) = f1(U)× Rn ⊂ Ũ1 × Rn

which is an open subset. Furthermore the transition function between these two
pseudo-charts is

Φ21 : f1(U)× Rn ∼−→ f2(U)× Rn

(x̃, v) 7→
(
φ21(x̃), Dφ21|x̃(v)

)
which is smooth.

Example E.2. Let X be the manifold T 1 from Example 2.11. We claim that
the tangent bundle to T 1 is the infinite cylinder

T (T 1) ∼= T 1 × R

(this is clearly a 2-dimensional manifold). We’ll prove this claim carefully a bit
later, but it’s also quite easy to see using an atlas.

Recall that we have an atlas for T 1 with two charts,

f1 : U1 = T 1 \ [0]
∼−→ Ũ1 = (0, 1)

and
f2 : U2 : T 1 \ [ 1

2 ]
∼−→ Ũ2 = (− 1

2 ,
1
2 )

119



both of which simply lift an equivalence class to its representative in the given
interval. The transition function between these two charts is:

φ21 : (0, 1
2 ) t ( 1

2 , 1) −→ (− 1
2 , 0) t (0, 1

2 )

x 7→
{

x, for x < 1
2

x− 1, for x > 1
2

So we have an atlas for the tangent bundle T (T 1) which has two charts

TŨ1 = (0, 1)× R

and:
T Ũ2 = (− 1

2 ,
1
2 )× R

The derivative of the transition function φ21 at any point is just the identity
map from R to R, so the transition function between our two charts on T (T 1)
is just:

Φ21 = (φ21, 1) :
(

(0, 1
2 ) t ( 1

2 , 1)
)
× R −→

(
(− 1

2 , 0) t (0, 1
2 )
)
× R

A manifold which has this atlas must be T 1 × R.

This example is rather unusual, it’s not normally true that the tangent
bundle to X is simply X × Rn. Manifolds like this are called parallelizable,
we’ll come back to this later on. Also, this is unfortunately the only non-trivial
example for which it’s easy to visualise the tangent bundle, because if X has
dimension ≥ 2 then TX has dimension ≥ 4.

For any manifold, the projection function π : TX → X is smooth, because
if we look at it in one of the charts (TU, F ) then it becomes the projection
Ũ×Rn → Ũ . The level sets of π are the individual tangent spaces TxX, and it’s
immediately clear that these are n-dimensional submanifolds of TX; moreover
it’s clear that π is a submersion.

A vector field on X is, by definition, a function

ξ : X → TX

such that π ◦ ξ = 1X . Given Proposition E.1, we don’t need to do any extra
work to define a smooth vector field, since we already have a definition of when
a function from X to TX is smooth. If you look back at Section 6.1, this is
precisely the definition of a smooth vector field that we wrote down there.

So for any manifold X we have an associated tangent bundle, which is a
smooth manifold TX coming with a smooth surjection

π : TX → X

such that every level set π−1(x) = TxX is a vector space. This is a very rich
mathematical structure, it’s an example of something called a vector bundle.
We’re now going to describe this more general structure, but the definition is
fairly complicated.

Let X be a manifold of dimension n. Informally, a vector bundle over a
manifold X is a collection of vector spaces {Ex}, indexed by the points of x.
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These vector spaces have to fit together to give a smooth manifold E, equipped
with a smooth map π : E → X whose level set over x ∈ X is the associated
vector space π−1(x) = Ex. For example, for any manifold X, and any integer
r, there is a vector bundle

π : E = X × Rr → X

where π is the projection map π : (v, x) 7→ x. It’s easy to show that there’s a
smooth structure on E making it into a manifold (of dimension n+ r), and that
π is smooth. Obviously the level set of π at any point x ∈ X is the vector space
Rr. This is called the trivial vector bundle of rank r.

The tangent bundle is not usually of this form, in general we can’t canonically
identify TxX with Rn so it’s not usually true that TX = X×Rn. However if we
pick a chart (U, f), then within the open set U ⊂ X it is true that TU = U×Rn,
since our co-ordinates give us this bijection. So within small neighbourhoods in
X, the tangent bundle looks like the trivial bundle of rank n. This condition,
of being ‘locally trivial’, is one of the key properties of a vector bundle.

Definition E.3. Let X be a manifold of dimension n. A vector bundle over
X is the following data:

• A manifold E, of dimension n+ r.

• A smooth surjection π : E → X, whose level sets we denote Ex = π−1(x).

• For each x ∈ X, the structure of an r-dimensional vector space on the
level set Ex.

We require that it is possible to find an atlas {(Ui, fi), i ∈ I} for X, and an atlas
{(Vi, gi), i ∈ I} for E (indexed by the same set I), with the following properties:

(i) Vi = π−1(Ui), for each i ∈ I.

(ii) Ṽi = Ũi × Rr ⊂ Rn+r, for each i ∈ I.

(iii) For each i ∈ I, the square

Vi Ũi × Rr

Ui Ũi

gi

π

fi

commutes, where the right-hand vertical arrow is the obvious projection
map.

(iv) For any x ∈ X and any i ∈ I, the map

gi|Ex : Ex → Rn

is an isomorphism of vector spaces.

The integer r is called the rank of the vector bundle, and the vector spaces Ex
are called the fibres of the vector bundle.
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A vector bundle is a lot of data: we need to specify E, π, and the vector
space structure on each fibre Ex. However it’s common to just write it as the
map π : E → X, or sometimes just as E.

Example E.4. For any manifold X, we have met the following examples of
vector bundles on X:

(i) The tangent bundle TX → X. When we defined the smooth structure
on TX we used an atlas of exactly this form, so the tangent bundle is a
vector bundle of rank n.

(ii) If we take E to be the trivial vector bundle of rank r, so E = X×Rr, then
any atlas {(Ui, fi), i ∈ I} for X will produce an atlas for E of the required
form, just by setting Vi = Ui × Rr and Ṽi = Ũi × Rr. So fortunately the
trivial vector bundle of rank r is indeed an example of a vector bundle, of
rank r.

(iii) In Section 8.1 we introduced the cotangent bundle:

T ?X =
⋃
x∈X

T ?xX

Using an argument which is essentially identical to the proof of Proposi-
tion E.1, the cotangent bundle is a manifold of dimension 2n. The same
argument shows that it is a vector bundle over X, of rank n.

(iv) In Section 8.3 we generalized this to the set:

∧pT ?X =
⋃
x∈X
∧pT ?xX

This is a vector bundle over X, of rank
(
n
p

)
.

But these are not the only examples of vector bundles.

Example E.5. Let E be the quotient of R2 by the equivalence relation

(x, y) ∼ (x+ n, (−1)ny), n ∈ Z

(these are the orbits of a group action generated by a horizontal glide reflection).
This is an infinite Möbius strip. We have a well-defined map:

π : E → T 1

[(x, y)] 7→ [x]

Notice that the usual vector space structure on R2 does give a well-defined
vector space structure on each fibre E[x]. Futhermore if we take the atlas
{(U1, f1), (U2, f2)} on T 1 from Example 2.11 then it’s easy to find a correspond-
ing atlas {(V1, g1), (V2, g2)} on E with all the properties required by Definition
E.3. For example, Ṽ1 = (0, 1)× R ⊂ R2, and V1 is the image of Ṽ1 in E.

The concept of a vector field can be easily generalized to other vector bundles:
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Definition E.6. Let π : E → X be a vector bundle. A section of E is a
smooth map

σ : X → E

such that π ◦ σ = 1X .

So a section σ sends any point x ∈ X to a vector σ|x ∈ Ex lying in the fibre
over x, and this vector varies smoothly with x. A section of the tangent bundle
TX is precisely a vector field. Similarly, a section of the cotangent bundle T ?X
is a one-form, and a section of the bundle ∧pT ?X is a p-form.

Any vector bundle has one obvious section, the zero section, which maps any
point x ∈ X to the zero vector 0 ∈ Ex. By looking at this in a chart it’s clear
that it is smooth, and furthermore it gives us an injective immersion

X ↪→ E

whose image is a submanifold which is diffeomorphic to X.

We saw earlier (Example 6.2) that the manifold T 1 has the rather special
property that the its tangent bundle looks like the trivial bundle T 1 × R. We
now want to say this precisely, but we first we need to say what it means for
two vector bundles over X to be isomorphic.

Definition E.7. Let π1 : E1 → X and π2 : E2 → X be two vector bundles over
X. An isomorphism between E1 and E2 is a diffeomorphism

F : E1
∼−→ E2

such that π2 ◦ F = π1, and such that the induced function

Fx : (E1)x → (E2)x

is a linear isomorphism, for each x ∈ X.

So an isomorphism of vector bundles is a bijection that preserves all the
structure of a vector bundle. In particular if two vector bundles over X are
isomorphic they must obviously have the same rank.

Definition E.8. A rank r vector bundle π : E → X is called trivial if it is
isomorphic to the trivial vector bundle X × Rr.

Here is one way to tell if a vector bundle is trivial:

Proposition E.9. Let π : E → X be a vector bundle of rank r. Then E is
trivial iff there exist r sections σ1, ..., σr of E such that, for every point x ∈ E,
the vectors

σ1|x, ..., σr|x ∈ Ex
form a basis of Ex.

Proof. If E is the trivial vector bundle X ×Rr then we can just pick any basis
e1, ..., er for Rr and consider the constant sections σ̃i : x 7→ ei for each i, which
are evidently smooth. More generally if F : X × Rr → E is an isomorphism of
vector bundles then we can define r sections of E by:

σi = F ◦ σ̃i : x 7→ Fx(ei) ∈ Ex
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These are smooth since both F and σ̃i are smooth, and give a basis of Ex since
Fx is an isomorphism of vector spaces.

Conversely, suppose that we have such a set of sections σ1, ..., σr. Define a
function

F : X × Rr → E

by:

F :
(
x, (v1, ..., vr)

)
7→

(
x,

r∑
i=1

viσ
i|x

)
Obviously F commutes with the projection maps, and for each x ∈ X the map
Fx is linear and sends the standard basis of Rr to the basis σ1|x, ..., σr|x of Ex.
Hence each Fx is an isomorphism of vector spaces, and it follows that F is a
bijection.

Now pick a chart (U, f) on X and a chart (V, g) on E of the form specified
in Definition E.3, and choose the corresponding chart U × Rr on X × Rr. In
these charts, each section σi is a smooth function

σ̃i = (σ̃i1, ...., σ̃
i
r) : Ũ → Rr

and F is the function
F̃ : Ũ × Rr → Ũ × Rr

given by the smooth family of invertible r-by-r matrices Mx̃ whose entries are
σ̃ij |x̃. The inverse function F̃−1 is given by the family of matrices M−1

x̃ , whose
entries will also vary smoothly with x̃ since they are rational functions of the
entries in Mx̃. Hence both F and F−1 are smooth, so we have shown that F is
an isomorphism of vector bundles.

Definition E.10. A manifold X is said to be parallelizable iff its tangent
bundle TX is trivial.

Example E.11. Let X = S1. In Example 6.2 we found a smooth vector field ξ
on S1 which was not equal to zero at any point. Since S1 is 1-dimensional, this
means that ξ gives a basis of the tangent space at every point. So by Proposition
E.9 the bundle TS1 is trivial, and S1 is parallelizable.

The manfold S2 is not parallelizable, because of the following fact:

Theorem E.12 (‘Hairy ball theorem’). Any vector field on S2 must be equal
to zero at some point.

Consequently it is impossible to find a pair of vector fields ξ1, ξ2 on S2 that
form a basis of the tangent space at every point.

Theorem E.12 is is a very nice result. It implies for example that at any
moment in time there must be a point on the Earth where the wind speed is zero,
and also that you cannot groom a spherical dog without leaving a protruding
tuft of hair at one point. The proof is not very difficult, but unfortunately it
requires some algebraic topology that doesn’t form a part of this course.

Theorem E.12 is true for any even-dimensional sphere S2n, so no even-
dimensional sphere is parallelizable. In fact the only parallelizable spheres are
S1, S3 and S7, but this is rather harder to prove.
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F Manifolds-with-boundary

In Section 9.3 we proved a version of Stokes’ Theorem, which is based funda-
mentally on the fact that if a function h ∈ C∞(R) vanishes outside some interval
then we must have

∫
dh = 0. However, the fundamental theorem of calculus is

much more precise than this, it says that for any function h, and any interval
[a, b], we have: ∫ b

a

dh = h(b)− h(a)

We want to generalize this statement to n-forms on an arbitrary manifold. How-
ever, the interval [a, b] is not a manifold, because of the end points a and b. The
statement we are after requires us to generalize the notion of a manifold, to
allow ‘boundary points’.

Definition F.1. A (second-countable, Hausdorff) topological space X is called
an n-dimensional topological manifold-with-boundary if for all points
x ∈ X we can find an open neighbourhood U of x, an open set

Ũ ⊂ R≤0 × Rn−1

and a homeomorphism f : U
∼−→ Ũ .

So a manifold-with-boundary is a space that ‘locally looks like’ the half-
space {x1 ≤ 0} ⊂ Rn. We continue to use the name ‘co-ordinate chart’ for these
homeomorphisms f : U

∼−→ Ũ .
There are two kinds of point in a manifold-with-boundary:

• For some x ∈ X, we can find a chart f : U → Ũ around x with Ũ entirely
contained in R<0 × Rn, so Ũ is an open subset of Rn. The set of such x
is called the interior of X.

• If x ∈ X is not in the interior, then one can prove (using algebraic topol-
ogy) that any chart around x must send x to a point on the hyperplane
{x1 = 0} ∼= Rn−1 ⊂ Rn. The set of these points is called the boundary of
X, and denoted ∂X.

The interior of X is obviously a (non-compact) n-dimensional topological man-
ifold. The boundary ∂X is an (n − 1)-dimensional topological manifold, since
it can be covered by the charts:

f : U ∩ ∂X ∼−→ Ũ ∩ {x1 = 0} ⊂ Rn−1

However, note that X itself is not a topological manifold, of any dimension.
The entire theory of manifolds - smooth structures, tangent spaces, differ-

ential forms, etc - can be generalized to manifolds-with-boundary fairly easily.
The only extra input needed is the definition of a smooth function between two
open sets in a half-space, and for this we adopt the following convention: a
function F : U → V between open sets

U ⊂ R≤0 × Rn−1 and V ⊂ R≤0 × Rk−1

is called smooth if there exist open sets Û ⊂ Rn and V̂ ⊂ Rk, with U ⊂ Û
and V ⊂ V̂ , and a smooth function F̂ : Û → V̂ such that F̂ |U = F . With
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this definition we can define the derivative DF |x at any point in U , even the

boundary points {x1 = 0}, by taking the derivative of F̂ . This doesn’t depend
on our choice of extension F̂ , because any partial derivative can be computed
from the x1 ≥ 0 side.

Example F.2. • The closed unit ballX = B(0, 1) ⊂ Rn is an n-dimensional
manifold-with-boundary, with a smooth stucture inherited from Rn. The
interior of X is the open unit ball, and its boundary ∂X is Sn−1.

• Generalizing the previous example, if h : Rn+1 → R is a smooth function
and α ∈ R is a regular value, then the proof of Proposition 3.16 adapts to
prove that the set

X =
{
x ∈ Rn+1, h(x) ≤ α

}
is an n-dimensional (smooth) manifold-with-boundary. Its boundary ∂X
is the level set h−1(α).

• If Y is any (n − 1)-dimensional manifold, and I is the closed interval
I = [0, 1], then X = Y × I is an n-dimensional manifold-with-boundary.
The boundary of X is the disjoint union ∂X = Y t Y of two copies of Y .

The full version of Stokes’ Theorem is about comparing the integral of dif-
ferential forms over X and over the boundary ∂X. As usual, we start by seeing
what happens in co-ordinates.

Let U ⊂ R≤0×Rn−1 be an open set, so U is a manifold-with-boundary, and
its boundary is ∂U = U ∩{x1 = 0}. Let ι : ∂U ↪→ U denote the inclusion of the
boundary. If we are given an (n− 1)-form α ∈ Ωn−1(U), then we can pull-back
α along ι to a get an (n− 1)-form on ∂U . Let’s write α explicitly as

α = α1 dx2 ∧ ... ∧ dxn + α2 dx1 ∧ dx3 ∧ ... ∧ dxn + ...

+ αndx1 ∧ ... ∧ dxn−1

for α1, ..., αn ∈ C∞(U), and compute the pull-back ι?α.
For a point z ∈ ∂U , the tangent space to ∂U is the subspace:

Tz(∂U) = {x1 = 0} ⊂ Rn = TzU

Pulling back α to ∂U just means restricting it to this subspace at all points,

i.e. evaluating it on (n− 1)-tuples of vectors from the subspace
〈

∂
∂x2

, ..., ∂
∂xn

〉
.

This only picks up the first component of α, so:

ι?α = α1|{x1=0} dx2 ∧ ... ∧ dxn ∈ Ωn−1(∂U)

The local version of Stokes’s Theorem on a manifold-with-boundary is the fol-
lowing statement:

Lemma F.3. Let U ⊂ R≥0 × Rn−1 be an open set, and let ι : ∂U ↪→ U denote
the inclusion of the boundary. Let α ∈ Ωn−1(U) be an (n−1) form that vanishes
outside some compact subset W ⊂ U . Then:∫

U

dα =

∫
∂U

ι?α

126



Proof. This is very similar to the proof of Lemma 9.18. We can extend α to
the whole of the half-space {x1 ≥ 0}, and then perform the integral over a ‘half-
cube’ [−r, 0] × [−r, r]×(n−1) if r is big enough. Now suppose that α has only
one non-vanishing component, and that component is

α = αj dx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxn

for some j > 1. Then ι?α vanishes, but the integral
∫
U
dα also vanishes, by the

argument from Lemma 9.18. The remaining case to consider is when

α = α1 dx2 ∧ ... ∧ dxn

and then we have∫
U

dα =

∫
[−r,r]×(n−1)

(∫
[−r,0]

∂α1

∂x1
dx1

)
dx2...dxn

=

∫
[−r,r]×(n−1)

α1|{x1=0} dx2....dxn

=

∫
∂U

ι?α

since α1 ≡ 0 on the set {x1 = −r}.

To generalize this statement to more interesting manifolds, we just need one
further fact:

Proposition F.4. If X is an oriented manifold-with-boundary, then there is a
canonical orientation on the boundary ∂X.

Sketch proof: Let ω ∈ Ωn(X) be a volume form. For a point x ∈ ∂X, pick
a chart around X, so locally we have an open set Ũ ⊂ R≤0 × Rn−1 and the

boundary is ∂Ũ = Ũ ∩ {x1 = 0}. In this chart, ω becomes

ω̃ = h dx1 ∧ ... ∧ dxn

for some h ∈ C∞(Ũ). Now choose a vector field along the boundary ∂Ũ which
points ‘out of’ Ũ , i.e. choose a function

ξ = (ξ1, ..., ξn) : ∂Ũ −→ Rn

such that ξ1 > 0 at all points. Contracting ω̃ with ξ (see Problem Sheets)
produces an (n− 1)-form

iξω̃ = hξ1 dx2 ∧ ... ∧ dxn − hξ2 dx1 ∧ dx3 ∧ ... ∧ dxn + ... ∈ Ωn−1(Ũ)

and pulling this back to ∂Ũ gives an (n− 1) form

ι?(iξω̃) = hξ1 dx2 ∧ ... ∧ dxn

on ∂Ũ . This is a volume form, since neither h nor ξ1 vanish at any point. Fur-
thermore, choosing a different ξ will have the effect of multiplying this volume
form by some always-positive function in C∞(∂Ũ), so the orientation that we
get on ∂Ũ is independent of ξ.
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To do this over the whole of ∂X, we use a partition-of-unity to build a
vector field ξ along ∂X which points outwards at all points. Then contracting
the volume form on X with ξ gives a volume form on ∂X, and the orientation
class is independent of ξ.

Note that if (U, f) is an oriented chart, so ω̃ is a positive multiple of the stan-
dard volume form, then this induced volume form ι?(iξω̃) is a positive multiple

of the standard volume form on ∂Ũ ⊂ Rn−1. So the associated chart (∂U, f |∂U )
on ∂X is also oriented.

Example F.5. • The closed ball X = B(0, 1) ⊂ Rn carries a volume form
given by just restricting the standard volume form on Rn. Hence the
boundary ∂X = Sn−1 gets an induced orientation, and this is the same
orientation that is produced by Proposition 9.6.

• If X is an oriented manifold, and I is the closed interval [0, 1], then X × I
can be given an orientation by wedging the volume form on X with the
standard volume form on I. Then the boundary X tX gets an induced
orientation, but on the first component this is the opposite orientation to
the one that we started with.

Combining Lemma F.3 with the proof of Theorem 9.19 immediately proves:

Theorem F.6 (Stokes’ Theorem, Version 2). Let X be a compact oriented n-
dimensional manifold-with-boundary, and let ι : ∂X ↪→ X denote the inclusion
of the boundary. For any α ∈ Ωn−1(X), we have:∫

X

dα =

∫
∂X

ι?α

Note that ∂X is compact (it’s a closed subset of a compact space) and
oriented (by Proposition F.4) so integrating over ∂X does make sense.

Example F.7.

• Let D be the closed disc D = B(0, 1) ⊂ R2, and let F : D ↪→ R3 be an
injective immersion. For any one-form α ∈ Ω1(R3), we have that∫

D

F ?dα =

∫
S1

F ?α

(since F ?dα = d(F ?α). This is the classical version of Stokes’ Theorem,
although normally one thinks of α as a vector field, and dα as the curl of
the vector field (see Example 8.30). As we’ve seen, it actually works when
F is any smooth function.

• Let F0, F1 : X → Y be two smooth functions, and let

H : X × [0, 1] −→ Y

be a smooth function such that H|X×{0} = F0 and H|X×{1} = F1. This
is called a (smooth) homotopy. Now suppose that X is compact and
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orientable, and that we have a closed n-form α ∈ Ωn(X), where n is the
dimension of X. Then since dα = 0, we have∫

X×[0,1]

H?dα =

∫
X

F ?1 α −
∫
X

F ?0 α = 0

and so
∫
X
F ?1 α =

∫
X
F ?0 α (the minus sign appears in the above equation

because the first boundary component carries the opposite orientation).
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